6 research outputs found

    Involvement of Vacuolar Sequestration and Active Transport in Tolerance of Saccharomyces cerevisiae to Hop Iso-α-Acids▿ † ¶

    No full text
    The hop plant, Humulus lupulus L., has an exceptionally high content of secondary metabolites, the hop α-acids, which possess a range of beneficial properties, including antiseptic action. Studies performed on the mode of action of hop iso-α-acids have hitherto been restricted to lactic acid bacteria. The present study investigated molecular mechanisms of hop iso-α-acid resistance in the model eukaryote Saccharomyces cerevisiae. Growth inhibition occurred at concentrations of hop iso-α-acids that were an order of magnitude higher than those found with hop-tolerant prokaryotes. Chemostat-based transcriptome analysis and phenotype screening of the S. cerevisiae haploid gene deletion collection were used as complementary methods to screen for genes involved in hop iso-α-acid detoxification and tolerance. This screening and further analysis of deletion mutants confirmed that yeast tolerance to hop iso-α-acids involves three major processes, active proton pumping into the vacuole by the vacuolar-type ATPase to enable vacuolar sequestration of iso-α-acids and alteration of cell wall structure and, to a lesser extent, active export of iso-α-acids across the plasma membrane. Furthermore, iso-α-acids were shown to affect cellular metal homeostasis by acting as strong zinc and iron chelators

    Identity of the Growth-Limiting Nutrient Strongly Affects Storage Carbohydrate Accumulation in Anaerobic Chemostat Cultures of Saccharomyces cerevisiae▿ † ‡

    No full text
    Accumulation of glycogen and trehalose in nutrient-limited cultures of Saccharomyces cerevisiae is negatively correlated with the specific growth rate. Additionally, glucose-excess conditions (i.e., growth limitation by nutrients other than glucose) are often implicated in high-level accumulation of these storage carbohydrates. The present study investigates how the identity of the growth-limiting nutrient affects accumulation of storage carbohydrates in cultures grown at a fixed specific growth rate. In anaerobic chemostat cultures (dilution rate, 0.10 h−1) of S. cerevisiae, the identity of the growth-limiting nutrient (glucose, ammonia, sulfate, phosphate, or zinc) strongly affected storage carbohydrate accumulation. The glycogen contents of the biomass from glucose- and ammonia-limited cultures were 10- to 14-fold higher than those of the biomass from cultures grown under the other three glucose-excess regimens. Trehalose levels were specifically higher under nitrogen-limited conditions. These results demonstrate that storage carbohydrate accumulation in nutrient-limited cultures of S. cerevisiae is not a generic response to excess glucose but instead is strongly dependent on the identity of the growth-limiting nutrient. While transcriptome analysis of wild-type and msn2Δ msn4Δ strains confirmed that transcriptional upregulation of glycogen and trehalose biosynthesis genes is mediated by Msn2p/Msn4p, transcriptional regulation could not quantitatively account for the drastic changes in storage carbohydrate accumulation. The results of assays of glycogen synthase and glycogen phosphorylase activities supported involvement of posttranscriptional regulation. Consistent with the high glycogen levels in ammonia-limited cultures, the ratio of glycogen synthase to glycogen phosphorylase in these cultures was up to eightfold higher than the ratio in the other glucose-excess cultures

    Multifactorial diversity sustains microbial community stability

    No full text
    Item does not contain fulltextMaintenance of a high degree of biodiversity in homogeneous environments is poorly understood. A complex cheese starter culture with a long history of use was characterized as a model system to study simple microbial communities. Eight distinct genetic lineages were identified, encompassing two species: Lactococcus lactis and Leuconostoc mesenteroides. The genetic lineages were found to be collections of strains with variable plasmid content and phage sensitivities. Kill-the-winner hypothesis explaining the suppression of the fittest strains by density-dependent phage predation was operational at the strain level. This prevents the eradication of entire genetic lineages from the community during propagation regimes (back-slopping), stabilizing the genetic heterogeneity in the starter culture against environmental uncertainty
    corecore