130 research outputs found

    Scaffolder - Software for Reproducible Genome Scaffolding.

    Get PDF
    Background: Assembly of short-read sequencing data can result in a fragmented non-contiguous series of genomic sequences. Therefore a common step in a genome project is to join neighboring sequence regions together and fill gaps in the assembly using additional sequences. This scaffolding step, however, is non-trivial and requires manually editing large blocks of nucleotide sequence. Joining these sequences together also hides the source of each region in the final genome sequence. Taken together, these considerations may make reproducing or editing an existing genome build difficult.

Methods: The software outlined here, “Scaffolder,” is implemented in the Ruby programming language and can be installed via the RubyGems software management system. Genome scaffolds are defined using YAML - a data format, which is both human and machine-readable. Command line binaries and extensive documentation are available.

Results: This software allows a genome build to be defined in terms of the constituent sequences using a relatively simple syntax to define the scaffold. This syntax further allows unknown regions to be defined, and adds additional sequences to fill gaps in the scaffold. Defining the genome construction in a file makes the scaffolding process reproducible and easier to edit compared with FASTA nucleotide sequence.

Conclusions: Scaffolder is easy-to-use genome scaffolding software. This tool promotes reproducibility and continuous development in a genome project. Scaffolder can be found at http://next.gs

    Innate Chemical Resistance of Virginia Big-eared Bats (Corynorhinus townsendii virginianus) to White-Nose Syndrome

    Get PDF
    White-nose Syndrome (WNS) is an emergent epidemic disease of bats in North America. Caused by the novel fungal pathogen Pseudogymnoascus destructans, with a mortality rate of \u3e75%, in the last decade WNS has led to the local extinction of numerous bat species. Despite this high mortality, one species, the Virginia big-eared bat (Corynorhinus townsendii virginianus) remains unaffected. Virginia big-eared bats (VBEs) are commonly found covered in a yellow, oily substance, with a pelage commensal population dominated by the yeast, Debaryomyces udenii. As D. udenii is an oleaginous yeast that produces yellow colonies, the fungus may be responsible for the production of this oily substance on bats. In order to test this, 54 swab samples from the pelage of various bat species, including VBEs, were collected, along with cultures of D. udenii and the control yeast Saccharomyces cerevisiae. These samples were extracted using the Bligh and Dyer lipid extraction method and reversed-phase lipid chromatography to identify shared lipid metabolites. The data demonstrated that only a handful of lipids were unique to D. udenii (compared to S. cerevisae), and only seven of these lipid candidates were found on VBE pelage extracts. Instead of indicating that D. udenii was responsible for the production of the yellow material, our data suggests that the yellow material on bats is selecting for the presence of this yeast, possibly over filamentous fungi. VBEs have large pararhinal glands, our hypothesis is that the material produced by these glands might be anti-fungal, selecting against the growth of filamentous fungi

    High Microbial Diversity Despite Extremely Low Biomass in a Deep Karst Aquifer

    Get PDF
    Despite the importance of karst aquifers as a source of drinking water, little is known about the role of microorganisms in maintaining the quality of this water. One of the limitations in exploring the microbiology of these environments is access, which is usually limited to wells and surface springs. In this study, we compared the microbiology of the Madison karst aquifer sampled via the potentiometric lakes of Wind Cave with surface sampling wells and a spring. Our data indicated that only the Streeter Well (STR), which is drilled into the same hydrogeologic domain as the Wind Cave Lakes (WCL), allowed access to water with the same low biomass (1.56–9.25 × 103 cells mL-1). Filtration of ∼300 L of water from both of these sites through a 0.2 μm filter allowed the collection of sufficient cells for DNA extraction, PCR amplification of 16S rRNA gene sequences, and identification through pyrosequencing. The results indicated that bacteria (with limited archaea and no detectable eukaryotic organisms) dominated both water samples; however, there were significant taxonomic differences in the bacterial populations of the samples. The STR sample was dominated by a single phylotype within the Gammaproteobacteria (Order Acidithiobacillales), which dramatically reduced the overall diversity and species richness of the population. In WCL, despite less organic carbon, the bacterial population was significantly more diverse, including significant contributions from the Gammaproteobacteria, Firmicutes, Chloroflexi, Actinobacteria, Planctomycetes, Fusobacter, and Omnitrophica phyla. Comparisons with similar oligotrophic environments suggest that karst aquifers have a greater species richness than comparable surface environs. These data also demonstrate that Wind Cave provides a unique opportunity to sample a deep, subterranean aquifer directly, and that the microbiology of such aquifers may be more complex than previously anticipated

    Genomic characterization of eight Ensifer strains isolated from pristine caves and a whole genome phylogeny of Ensifer (Sinorhizobium)

    Full text link
    A total of eight Ensifer sp. strains were isolated from two pristine cave environments. One strainwas isolated from a cave water pool located in the Wind Cave National Park, South Dakota, USAand the remaining seven strains were isolated from Lechuguilla Cave of Carlsbad Caverns NationalPark, New Mexico, USA. Whole genome sequencing and comparative genomic analyses of theeight isolates compared to various type strains from the genera Ensifer and Sinorhizobiumdemonstrates that although members in these genera can be phylogenetically separated into twodistinct clades, the percentage of conserved proteins (POCP) between various type strains fromEnsifer and Sinorhizobium are consistently higher than 50%, providing strong genomic evidence tosupport the classification of the genera Ensifer and Sinorhizobium into a single genus

    Influence of Maternal Lifestyle and Diet on Perinatal DNA Methylation Signatures Associated With Childhood Arterial Stiffness at 8 to 9 Years

    Get PDF
    Increases in aortic pulse wave velocity, a measure of arterial stiffness, can lead to elevated systolic blood pressure and increased cardiac afterload in adulthood. These changes are detectable in childhood and potentially originate in utero, where an adverse early life environment can alter DNA methylation patterns detectable at birth. Here, analysis of epigenome-wide methylation patterns using umbilical cord blood DNA from 470 participants in the Southampton’s Women’s Survey identified differential methylation patterns associated with systolic blood pressure, pulse pressure, arterial distensibility, and descending aorta pulse wave velocity measured by magnetic resonance imaging at 8 to 9 years. Perinatal methylation levels at 16 CpG loci were associated with descending aorta pulse wave velocity, with identified CpG sites enriched in pathways involved in DNA repair (P=9.03×10−11). The most significant association was with cg20793626 methylation (within protein phosphatase, Mg2+/Mn2+ dependent 1D; β=−0.05 m/s/1% methylation change, [95% CI, −0.09 to −0.02]). Genetic variation was also examined but had a minor influence on these observations. Eight pulse wave velocity-linked dmCpGs were associated with prenatal modifiable risk factors, with cg08509237 methylation (within palmitoyl-protein thioesterase-2) associated with maternal oily fish consumption in early and late pregnancy. Lower oily fish consumption in early pregnancy modified the relationship between methylation and pulse wave velocity, with lower consumption strengthening the association between cg08509237 methylation and increased pulse wave velocity. In conclusion, measurement of perinatal DNA methylation signatures has utility in identifying infants who might benefit from preventive interventions to reduce risk of later cardiovascular disease, and modifiable maternal factors can reduce this risk in the child

    Human SNP links differential outcomes in inflammatory and infectious disease to a FOXO3-regulated pathway

    Get PDF
    The clinical course and eventual outcome, or prognosis, of complex diseases varies enormously between affected individuals. This variability critically determines the impact a disease has on a patient’s life but is very poorly understood. Here, we exploit existing genome-wide association study data to gain insight into the role of genetics in prognosis. We identify a noncoding polymorphism in FOXO3A (rs12212067: T > G) at which the minor (G) allele, despite not being associated with disease susceptibility, is associated with a milder course of Crohn’s disease and rheumatoid arthritis and with increased risk of severe malaria. Minor allele carriage is shown to limit inflammatory responses in monocytes via a FOXO3-driven pathway, which through TGFβ1 reduces production of proinflammatory cytokines, including TNFα, and increases production of anti-inflammatory cytokines, including IL-10. Thus, we uncover a shared genetic contribution to prognosis in distinct diseases that operates via a FOXO3-driven pathway modulating inflammatory responses. PAPERCLIP
    • …
    corecore