190 research outputs found

    Generation of Dicke states using adiabatic passage

    Full text link
    Entangled states of two ions are realized by using an adiabatic process. Based on the proposal by Linington and Vitanov, we have generated Dicke states in optical qubits of two 40^{40}Ca+^+ ions by applying frequency-chirped optical pulses with time-dependent envelopes to perform rapid adiabatic passage on sideband transitions. One of the biggest advantages of adiabatic approaches is their robustness against variations in experimental parameters, which is verified by performing experiments for different pulse widths or peak Rabi frequencies. Fidelities exceeding 0.5, which is the threshold for inseparable states, are obtained over wide ranges of parameter values

    Duration of Star Formation in Galactic Giant Molecular Clouds. I. The Great Nebula in Carina

    Get PDF
    We present a novel infrared spectral energy distribution (SED) modeling methodology that uses likelihood-based weighting of the model fitting results to construct probabilistic Hertzsprung–Russell diagrams (pHRD) for X-ray-identified, intermediate-mass (2–8 M⊙), pre-main-sequence young stellar populations. This methodology is designed specifically for application to young stellar populations suffering strong, differential extinction (ΔA_V > 10 mag), typical of Galactic massive star-forming regions. We pilot this technique in the Carina Nebula Complex (CNC) by modeling the 1–8 μm SEDs of 2269 likely stellar members that exhibit no excess emission from circumstellar dust disks at 4.5 μm or shorter wavelengths. A subset of ~100 intermediate-mass stars in the lightly obscured Trumpler 14 and 16 clusters have available spectroscopic T_(eff), measured from the Gaia-ESO survey. We correctly identify the stellar temperature in 85% of cases, and the aggregate pHRD for all sources returns the same peak in the stellar age distribution as obtained using the spectroscopic T_(eff). The SED model parameter distributions of stellar mass and evolutionary age reveal significant variation in the duration of star formation among four large-scale stellar overdensities within the CNC and a large distributed stellar population. Star formation began ~10 Myr ago and continues to the present day, with the star formation rate peaking ≾3 Myr ago when the massive Trumpler 14 and 16 clusters formed. We make public the set of 100,000 SED models generated from standard pre-main-sequence evolutionary tracks and our custom software package for generating pHRDs and mass–age distributions from the SED fitting results

    Exotic heavy-fermion superconductivity in atomically thin CeCoIn5 films

    Get PDF
    Funding: This work is supported by Grants-in-Aid for Scientific Research (KAKENHI) (Grants No. JP18H01180, No. JP18H05227, and No. JP18K03511) from Japan Society for the Promotion of Science (JSPS), and by Core Research for Evolutional Science and Technology (CREST) (Grant No. JP-MJCR19T5) from Japan Science and Technology Agency (JST).We report an in situ scanning tunneling microscopy study of atomically thin films of CeCoIn5, a d-wave heavy-fermion superconductor. Both hybridization and superconducting gaps are observed even in monolayer CeCoIn5, providing direct evidence of superconductivity of heavy quasiparticles mediated by purely two-dimensional bosonic excitations. In these atomically thin films, Tc is suppressed to nearly half of the bulk, but is similar to CeCoIn5/YbCoIn5 superlattices containing CeCoIn5 layers with the same thickness as the thin films. Remarkably, the out-of-plane upper critical field μ0Hc2⊥ at zero temperature is largely enhanced from those of bulk and superlattices. The enhanced Hc2⊥ well exceeds the Pauli and bulk orbital limits, suggesting the possible emergence of unusual superconductivity with parity mixing caused by the inversion symmetry breaking.Publisher PDFPeer reviewe

    Energy-scaling of the product state distribution for three-body recombination of ultracold atoms

    Get PDF
    Three-body recombination is a chemical reaction where the collision of three atoms leads to the formation of a diatomic molecule. In the ultracold regime it is expected that the production rate of a molecule generally decreases with its binding energy EbE_b, however, its precise dependence and the physics governing it have been left unclear so far. Here, we present a comprehensive experimental and theoretical study of the energy dependency for three-body recombination of ultracold Rb. For this, we determine production rates for molecules in a state-to-state resolved manner, with the binding energies EbE_b ranging from 0.02 to 77 GHz×h\times h. We find that the formation rate approximately scales as Eb−αE_b^{-\alpha}, where α\alpha is in the vicinity of 1. The formation rate typically varies only within a factor of two for different rotational angular momenta of the molecular product, apart from a possible centrifugal barrier suppression for low binding energies. In addition to numerical three-body calculations we present a perturbative model which reveals the physical origin of the energy scaling of the formation rate. Furthermore, we show that the scaling law potentially holds universally for a broad range of interaction potentials.Comment: 15 pages, 13 figure

    Duration of Star Formation in Galactic Giant Molecular Clouds. I. The Great Nebula in Carina

    Get PDF
    We present a novel infrared spectral energy distribution (SED) modeling methodology that uses likelihood-based weighting of the model fitting results to construct probabilistic Hertzsprung–Russell diagrams (pHRD) for X-ray-identified, intermediate-mass (2–8 M⊙), pre-main-sequence young stellar populations. This methodology is designed specifically for application to young stellar populations suffering strong, differential extinction (ΔA_V > 10 mag), typical of Galactic massive star-forming regions. We pilot this technique in the Carina Nebula Complex (CNC) by modeling the 1–8 μm SEDs of 2269 likely stellar members that exhibit no excess emission from circumstellar dust disks at 4.5 μm or shorter wavelengths. A subset of ~100 intermediate-mass stars in the lightly obscured Trumpler 14 and 16 clusters have available spectroscopic T_(eff), measured from the Gaia-ESO survey. We correctly identify the stellar temperature in 85% of cases, and the aggregate pHRD for all sources returns the same peak in the stellar age distribution as obtained using the spectroscopic T_(eff). The SED model parameter distributions of stellar mass and evolutionary age reveal significant variation in the duration of star formation among four large-scale stellar overdensities within the CNC and a large distributed stellar population. Star formation began ~10 Myr ago and continues to the present day, with the star formation rate peaking ≾3 Myr ago when the massive Trumpler 14 and 16 clusters formed. We make public the set of 100,000 SED models generated from standard pre-main-sequence evolutionary tracks and our custom software package for generating pHRDs and mass–age distributions from the SED fitting results

    High contrast experiment of an AO-free coronagraph with a checkerboard pupil mask

    Full text link
    A high contrast coronagraph is expected to provide one of the promising ways to directly observe extra-solar planets. We present the newest results of our laboratory experiment investigating "rigid" coronagraph with a binary shaped checkerboard pupil mask, which should offer a highly stable solution for telescopes without adaptive optics (AO) for wavefront correction in space missions. The primary aim of this work was to study the stability of the coronagraph, and to demonstrate its performance without adaptive wavefront correction. Estimation of both the raw contrast and the gain of the point spread function (PSF) subtraction were needed. The limiting factor of the contrast was also important. A binary shaped pupil mask of a checkerboard type has been designed. The mask, consisting of an aluminum film on a glass substrate, was manufactured using nano-fabrication techniques with electron beam lithography. Careful evaluation of coronagraphic performance, including PSF subtraction, was carried out in air using the developed mask. A contrast of 6.7×10−86.7 \times 10^{-8} was achieved for the raw coronagraphic image by areal averaging of all of the observed dark regions. Following PSF subtraction, the contrast reached 6.8×10−96.8 \times 10^{-9}. Speckles were a major limiting factor throughout the dark regions of both the raw image and the PSF subtracted image. A rigid coronagraph with PSF subtraction without AO is a useful method to achieve high contrast observations. Applications of a rigid coronagraph to a Space Infrared telescope for Cosmology and Astrophysics (SPICA) and other platforms are discussed.Comment: 13 pages, 6 figure

    Variation in amino acid and lipid composition of latent fingerprints

    Get PDF
    The enhancement of latent fingerprints, both at the crime scene and in the laboratory using an array of chemical, physical and optical techniques, permits their use for identification. Despite the plethora of techniques available, there are occasions when latent fingerprints are not successfully enhanced. An understanding of latent fingerprint chemistry and behaviour will aid the improvement of current techniques and the development of novel ones. In this study the amino acid and fatty acid content of ‘real’ latent fingerprints collected on a non-porous surface was analysed by gas chromatography–mass spectrometry. Squalene was also quantified in addition. Hexadecanoic acid, octadecanoic acid and cis-9- octadecenoic acid were the most abundant fatty acids in all samples. There was, however, wide variation in the relative amounts of each fatty acid in each sample. It was clearly demonstrated that touching sebum-rich areas of the face immediately prior to fingerprint deposition resulted in a significant increase in the amount of fatty acids and squalene deposited in the resulting ‘groomed’ fingerprints. Serine was the most abundant amino acid identified followed by glycine, alanine and aspartic acid. The significant quantitative differences between the ‘natural’ and ‘groomed’ fingerprint samples seen for fatty acids were not observed in the case of the amino acids. This study demonstrates the variation in latent fingerprint composition between individuals and the impact of the sampling protocol on the quantitative analysis of fingerprints
    • …
    corecore