3 research outputs found

    A survey on classification algorithms of brain images in Alzheimer’s disease based on feature extraction techniques

    Get PDF
    Abstract: Alzheimer’s disease (AD) is one of the most serious neurological disorders for elderly people. AD affected patient experiences severe memory loss. One of the main reasons for memory loss in AD patients is atrophy in the hippocampus, amygdala, etc. Due to the enormous growth of AD patients and the paucity of proper diagnostic tools, detection and classification of AD are considered as a challenging research area. Before a Cognitively normal (CN) person develops symptoms of AD, he may pass through an intermediate stage, commonly known as Mild Cognitive Impairment (MCI). MCI is having two stages, namely StableMCI (SMCI) and Progressive MCI (PMCI). In SMCI, a patient remains stable, whereas, in the case of PMCI, a person gradually develops few symptoms of AD. Several research works are in progress on the detection and classification of AD based on changes in the brain. In this paper, we have analyzed few existing state-of-art works for AD detection and classification, based on different feature extraction approaches. We have summarized the existing research articles with detailed observations. We have also compared the performance and research issues in each of the feature extraction mechanisms and observed that the AD classification using the wavelet transform-based feature extraction approaches might achieve convincing results

    An approach for classification of Alzheimer’s disease using deep neural network and brain magnetic resonance imaging (MRI)

    Get PDF
    Alzheimer’s disease (AD) is a deadly cognitive condition in which people develop severe dementia symptoms. Neurologists commonly use a series of physical and mental tests to diagnose AD that may not always be effective. Damage to brain cells is the most significant physical change in AD. Proper analysis of brain images may assist in the identification of crucial bio-markers for the disease. Because the development of brain cells is so intricate, traditional image processing algorithms sometimes fail to perceive important bio-markers. The deep neural network (DNN) is a machine learning technique that helps specialists in making appropriate decisions. In this work, we used brain magnetic resonance scans to implement some commonly used DNN models for AD classification. According to the classification results, where the average of multiple metrics is observed, which includes accuracy, precision, recall, and an F1 score, it is found that the DenseNet-121 model achieved the best performance (86.55%). Since DenseNet-121 is a computationally expensive model, we proposed a hybrid technique incorporating LeNet and AlexNet that is light weight and also capable of outperforming DenseNet. To extract important features, we replaced the traditional convolution Layers with three parallel small filters (1 × 1, 3 × 3, and 5 × 5). The model functions effectively, with an overall performance rate of 93.58%. Mathematically, it is observed that the proposed model generates significantly fewer convolutional parameters, resulting in a lightweight model that is computationally effective.Web of Science123art. no. 67

    An Approach for Classification of Alzheimer’s Disease Using Deep Neural Network and Brain Magnetic Resonance Imaging (MRI)

    No full text
    Alzheimer’s disease (AD) is a deadly cognitive condition in which people develop severe dementia symptoms. Neurologists commonly use a series of physical and mental tests to diagnose AD that may not always be effective. Damage to brain cells is the most significant physical change in AD. Proper analysis of brain images may assist in the identification of crucial bio-markers for the disease. Because the development of brain cells is so intricate, traditional image processing algorithms sometimes fail to perceive important bio-markers. The deep neural network (DNN) is a machine learning technique that helps specialists in making appropriate decisions. In this work, we used brain magnetic resonance scans to implement some commonly used DNN models for AD classification. According to the classification results, where the average of multiple metrics is observed, which includes accuracy, precision, recall, and an F1 score, it is found that the DenseNet-121 model achieved the best performance (86.55%). Since DenseNet-121 is a computationally expensive model, we proposed a hybrid technique incorporating LeNet and AlexNet that is light weight and also capable of outperforming DenseNet. To extract important features, we replaced the traditional convolution Layers with three parallel small filters (1×1,3×3, and 5×5). The model functions effectively, with an overall performance rate of 93.58%. Mathematically, it is observed that the proposed model generates significantly fewer convolutional parameters, resulting in a lightweight model that is computationally effective
    corecore