227 research outputs found

    Energy Distribution associated with Static Axisymmetric Solutions

    Full text link
    This paper has been addressed to a very old but burning problem of energy in General Relativity. We evaluate energy and momentum densities for the static and axisymmetric solutions. This specializes to two metrics, i.e., Erez-Rosen and the gamma metrics, belonging to the Weyl class. We apply four well-known prescriptions of Einstein, Landau-Lifshitz, Papaterou and Mo¨\ddot{o}ller to compute energy-momentum density components. We obtain that these prescriptions do not provide similar energy density, however momentum becomes constant in each case. The results can be matched under particular boundary conditions.Comment: 18 pages, accepted for publication in Astrophysics and SpaceScienc

    Gravitational Charged Perfect Fluid Collapse in Friedmann Universe Models

    Full text link
    This paper is devoted to study the gravitational charged perfect fluid collapse in the Friedmann universe models with cosmological constant. For this purpose, we assume that the electromagnetic field is so weak that it does not introduce any distortion into the geometry of the spacetime. The results obtained from the junction conditions between the Friedmann and the Reissner-Nordstro¨\ddot{o}m de-Sitter spacetimes are used to solve the field equations. Further, the singularity structure and mass effects of the collapsing system on time difference between the formation of apparent horizons and singularity have been studied. This analysis provides the validity of Cosmic Censorship Hypothesis. It is found that the electric field affects the area of apparent horizons and their time of formation.Comment: 17 pages, accepted for publication in Astrophys. Space Sc

    Energy Distribution in f(R) Gravity

    Full text link
    The well-known energy problem is discussed in f(R) theory of gravity. We use the generalized Landau-Lifshitz energy-momentum complex in the framework of metric f(R) gravity to evaluate the energy density of plane symmetric solutions for some general f(R) models. In particular, this quantity is found for some popular choices of f(R) models. The constant scalar curvature condition and the stability condition for these models are also discussed. Further, we investigate the energy distribution of cosmic string spacetime.Comment: 15 pages, accepted for publication in Gen. Relativ. & Gra

    Newtonian Analysis of Gravitational Waves from Naked Singularity

    Get PDF
    Spherical dust collapse generally forms a shell focusing naked singularity at the symmetric center. This naked singularity is massless. Further the Newtonian gravitational potential and speed of the dust fluid elements are everywhere much smaller than unity until the central shell focusing naked singularity formation if an appropriate initial condition is set up. Although such a situation is highly relativistic, the analysis by the Newtonian approximation scheme is available even in the vicinity of the space-time singularity. This remarkable feature makes the analysis of such singularity formation very easy. We investigate non-spherical even-parity matter perturbations in this scheme by complementary using numerical and semi-analytical approaches, and estimate linear gravitational waves generated in the neighborhood of the naked singularity by the quadrupole formula. The result shows good agreement with the relativistic perturbation analysis recently performed by Iguchi et al. The energy flux of the gravitational waves is finite but the space-time curvature carried by them diverges.Comment: 23 pages, 8 figure

    Gauge fixing and the Hamiltonian for cylindrical spacetimes

    Full text link
    We introduce a complete gauge fixing for cylindrical spacetimes in vacuo that, in principle, do not contain the axis of symmetry. By cylindrically symmetric we understand spacetimes that possess two commuting spacelike Killing vectors, one of them rotational and the other one translational. The result of our gauge fixing is a constraint-free model whose phase space has four field-like degrees of freedom and that depends on three constant parameters. Two of these constants determine the global angular momentum and the linear momentum in the axis direction, while the third parameter is related with the behavior of the metric around the axis. We derive the explicit expression of the metric in terms of the physical degrees of freedom, calculate the reduced equations of motion and obtain the Hamiltonian that generates the reduced dynamics. We also find upper and lower bounds for this reduced Hamiltonian that provides the energy per unit length contained in the system. In addition, we show that the reduced formalism constructed is well defined and consistent at least when the linear momentum in the axis direction vanishes. Furthermore, in that case we prove that there exists an infinite number of solutions in which all physical fields are constant both in the surroundings of the axis and at sufficiently large distances from it. If the global angular momentum is different from zero, the isometry group of these solutions is generally not orthogonally transitive. Such solutions generalize the metric of a spinning cosmic string in the region where no closed timelike curves are present.Comment: 12 pages, accepted for publication in Physical Review

    High-Speed Cylindrical Collapse of Two Perfect Fluids

    Full text link
    In this paper, the study of the gravitational collapse of cylindrically distributed two perfect fluid system has been carried out. It is assumed that the collapsing speeds of the two fluids are very large. We explore this condition by using the high-speed approximation scheme. There arise two cases, i.e., bounded and vanishing of the ratios of the pressures with densities of two fluids given by cs,dsc_s, d_s. It is shown that the high-speed approximation scheme breaks down by non-zero pressures p1,p2p_1, p_2 when cs,dsc_s, d_s are bounded below by some positive constants. The failure of the high-speed approximation scheme at some particular time of the gravitational collapse suggests the uncertainity on the evolution at and after this time. In the bounded case, the naked singularity formation seems to be impossible for the cylindrical two perfect fluids. For the vanishing case, if a linear equation of state is used, the high-speed collapse does not break down by the effects of the pressures and consequently a naked singularity forms. This work provides the generalisation of the results already given by Nakao and Morisawa [1] for the perfect fluid.Comment: 11 pages, 1 figure, accepted for publication in Gen. Rel. Gra

    An illustrated key to male Actinote from Southeastern Brazil (Lepidoptera, Nymphalidae)

    Full text link

    Minimum black hole mass from colliding Gaussian packets

    Full text link
    We study the formation of a black hole in the collision of two Gaussian packets. Rather than following their dynamical evolution in details, we assume a horizon forms when the mass function for the two packets becomes larger than half the flat areal radius, as it would occur in a spherically symmetric geometry. This simple approximation allows us to determine the existence of a minimum black hole mass solely related to the width of the packets. We then comment on the possible physical implications, both in classical and quantum physics, and models with extra spatial dimensions.Comment: 11 pages, 4 figure

    Energy Distribution for Non-commutative Radiating Schwarzschild Black Holes

    Full text link
    The aim of this article is the calculation of the energy-momentum for a non-commutative radiating Schwarzschild black hole in order to obtain the expressions for energy. We make the calculations with the Einstein and M\oller prescriptions. We show that the expressions for energy in both the prescriptions depend on the mass MM, θ\theta parameter and radial coordinate. We make some comparisons between the results. Our results show that the Einstein prescription is a more powerful concept than the M\oller prescription.Comment: 5 pages and 6 figures. Revised version submitted in Int.J.Theor.Phys. after minor revisio

    Ten Proofs of the Generalized Second Law

    Full text link
    Ten attempts to prove the Generalized Second Law of Thermodyanmics (GSL) are described and critiqued. Each proof provides valuable insights which should be useful for constructing future, more complete proofs. Rather than merely summarizing previous research, this review offers new perspectives, and strategies for overcoming limitations of the existing proofs. A long introductory section addresses some choices that must be made in any formulation the GSL: Should one use the Gibbs or the Boltzmann entropy? Should one use the global or the apparent horizon? Is it necessary to assume any entropy bounds? If the area has quantum fluctuations, should the GSL apply to the average area? The definition and implications of the classical, hydrodynamic, semiclassical and full quantum gravity regimes are also discussed. A lack of agreement regarding how to define the "quasi-stationary" regime is addressed by distinguishing it from the "quasi-steady" regime.Comment: 60 pages, 2 figures, 1 table. v2: corrected typos and added a footnote to match the published versio
    • …
    corecore