13,144 research outputs found

    Gravitational waves from quasi-spherical black holes

    Full text link
    A quasi-spherical approximation scheme, intended to apply to coalescing black holes, allows the waveforms of gravitational radiation to be computed by integrating ordinary differential equations.Comment: 4 revtex pages, 2 eps figure

    Complex lapse, complex action and path integrals

    Get PDF
    Imaginary time is often used in quantum tunnelling calculations. This article advocates a conceptually sounder alternative: complex lapse. In the ``3+1'' action for the Einstein gravitational field minimally coupled to a Klein-Gordon field, allowing the lapse function to be complex yields a complex action which generates both the usual Lorentzian theory and its Riemannian analogue, and in particular allows a change of signature between the two. The action and variational equations are manifestly well defined in the Hamiltonian representation, with the momentum fields consequently being complex. The complex action interpolates between the Lorentzian and Riemannian actions as they appear formally in the respective path integrals. Thus the complex-lapse theory provides a unified basis for a path-integral quantum theory of gravity involving both Lorentzian and Riemannian aspects. A major motivation is the quantum-tunnelling scenario for the origin of the universe. Taken as an explanation for the observed quantum tunnelling of particles, the complex-lapse theory determines that the argument of the lapse for the universe now is extremely small but negative.Comment: 12 pages, Te

    BOUNDARY CONDITIONS FOR THE SCALAR FIELD IN THE PRESENCE OF SIGNATURE CHANGE

    Get PDF
    We show that, contrary to recent criticism, our previous work yields a reasonable class of solutions for the massless scalar field in the presence of signature change.Comment: 11 pages, Plain Tex, no figure

    Quasi-local first law of black-hole dynamics

    Get PDF
    A property well known as the first law of black hole is a relation among infinitesimal variations of parameters of stationary black holes. We consider a dynamical version of the first law, which may be called the first law of black hole dynamics. The first law of black hole dynamics is derived without assuming any symmetry or any asymptotic conditions. In the derivation, a definition of dynamical surface gravity is proposed. In spherical symmetry it reduces to that defined recently by one of the authors (SAH).Comment: Latex, 8 pages; version to appear in Class. Quantum Gra

    Unified first law of black-hole dynamics and relativistic thermodynamics

    Full text link
    A unified first law of black-hole dynamics and relativistic thermodynamics is derived in spherically symmetric general relativity. This equation expresses the gradient of the active gravitational energy E according to the Einstein equation, divided into energy-supply and work terms. Projecting the equation along the flow of thermodynamic matter and along the trapping horizon of a blackhole yield, respectively, first laws of relativistic thermodynamics and black-hole dynamics. In the black-hole case, this first law has the same form as the first law of black-hole statics, with static perturbations replaced by the derivative along the horizon. There is the expected term involving the area and surface gravity, where the dynamic surface gravity is defined as in the static case but using the Kodama vector and trapping horizon. This surface gravity vanishes for degenerate trapping horizons and satisfies certain expected inequalities involving the area and energy. In the thermodynamic case, the quasi-local first law has the same form, apart from a relativistic factor, as the classical first law of thermodynamics, involving heat supply and hydrodynamic work, but with E replacing the internal energy. Expanding E in the Newtonian limit shows that it incorporates the Newtonian mass, kinetic energy, gravitational potential energy and thermal energy. There is also a weak type of unified zeroth law: a Gibbs-like definition of thermal equilibrium requires constancy of an effective temperature, generalising the Tolman condition and the particular case of Hawking radiation, while gravithermal equilibrium further requires constancy of surface gravity. Finally, it is suggested that the energy operator of spherically symmetric quantum gravity is determined by the Kodama vector, which encodes a dynamic time related to E.Comment: 18 pages, TeX, expanded somewhat, to appear in Class. Quantum Gra

    Energy of gravitational radiation in plane-symmetric space-times

    Full text link
    Gravitational radiation in plane-symmetric space-times can be encoded in a complex potential, satisfying a non-linear wave equation. An effective energy tensor for the radiation is given, taking a scalar-field form in terms of the potential, entering the field equations in the same way as the matter energy tensor. It reduces to the Isaacson energy tensor in the linearized, high-frequency approximation. An energy conservation equation is derived for a quasi-local energy, essentially the Hawking energy. A transverse pressure exerted by interacting low-frequency gravitational radiation is predicted.Comment: 7 REVTeX4 page

    Quantum energy inequalities in two dimensions

    Full text link
    Quantum energy inequalities (QEIs) were established by Flanagan for the massless scalar field on two-dimensional Lorentzian spacetimes globally conformal to Minkowski space. We extend his result to all two-dimensional globally hyperbolic Lorentzian spacetimes and use it to show that flat spacetime QEIs give a good approximation to the curved spacetime results on sampling timescales short in comparison with natural geometric scales. This is relevant to the application of QEIs to constrain exotic spacetime metrics.Comment: 4 pages, REVTeX. This is an expanded version of a portion of gr-qc/0409043. To appear in Phys Rev

    Dilatonic wormholes: construction, operation, maintenance and collapse to black holes

    Get PDF
    The CGHS two-dimensional dilaton gravity model is generalized to include a ghost Klein-Gordon field, i.e. with negative gravitational coupling. This exotic radiation supports the existence of static traversible wormhole solutions, analogous to Morris-Thorne wormholes. Since the field equations are explicitly integrable, concrete examples can be given of various dynamic wormhole processes, as follows. (i) Static wormholes are constructed by irradiating an initially static black hole with the ghost field. (ii) The operation of a wormhole to transport matter or radiation between the two universes is described, including the back-reaction on the wormhole, which is found to exhibit a type of neutral stability. (iii) It is shown how to maintain an operating wormhole in a static state, or return it to its original state, by turning up the ghost field. (iv) If the ghost field is turned off, either instantaneously or gradually, the wormhole collapses into a black hole.Comment: 9 pages, 7 figure

    Construction and enlargement of traversable wormholes from Schwarzschild black holes

    Full text link
    Analytic solutions are presented which describe the construction of a traversable wormhole from a Schwarzschild black hole, and the enlargement of such a wormhole, in Einstein gravity. The matter model is pure radiation which may have negative energy density (phantom or ghost radiation) and the idealization of impulsive radiation (infinitesimally thin null shells) is employed.Comment: 22 pages, 7 figure
    • …
    corecore