11,797 research outputs found
Interacting with the biomolecular solvent accessible surface via a haptic feedback device
Background: From the 1950s computer based renderings of molecules have been produced to aid researchers in their understanding of biomolecular structure and function. A major consideration for any molecular graphics software is the ability to visualise the three dimensional structure of the molecule. Traditionally, this was accomplished via stereoscopic pairs of images and later realised with three dimensional display technologies. Using a haptic feedback device in combination with molecular graphics has the potential to enhance three dimensional visualisation. Although haptic feedback devices have been used to feel the interaction forces during molecular docking they have not been used explicitly as an aid to visualisation. Results: A haptic rendering application for biomolecular visualisation has been developed that allows the user to gain three-dimensional awareness of the shape of a biomolecule. By using a water molecule as the probe, modelled as an oxygen atom having hard-sphere interactions with the biomolecule, the process of exploration has the further benefit of being able to determine regions on the molecular surface that are accessible to the solvent. This gives insight into how awkward it is for a water molecule to gain access to or escape from channels and cavities, indicating possible entropic bottlenecks. In the case of liver alcohol dehydrogenase bound to the inhibitor SAD, it was found that there is a channel just wide enough for a single water molecule to pass through. Placing the probe coincident with crystallographic water molecules suggests that they are sometimes located within small pockets that provide a sterically stable environment irrespective of hydrogen bonding considerations. Conclusion: By using the software, named HaptiMol ISAS (available from http://www.haptimol.co.uk), one can explore the accessible surface of biomolecules using a three-dimensional input device to gain insights into the shape and water accessibility of the biomolecular surface that cannot be so easily attained using conventional molecular graphics software
Energy of gravitational radiation in plane-symmetric space-times
Gravitational radiation in plane-symmetric space-times can be encoded in a
complex potential, satisfying a non-linear wave equation. An effective energy
tensor for the radiation is given, taking a scalar-field form in terms of the
potential, entering the field equations in the same way as the matter energy
tensor. It reduces to the Isaacson energy tensor in the linearized,
high-frequency approximation. An energy conservation equation is derived for a
quasi-local energy, essentially the Hawking energy. A transverse pressure
exerted by interacting low-frequency gravitational radiation is predicted.Comment: 7 REVTeX4 page
Late Miocene to early Pliocene stratigraphic record in northern Taranaki Basin: Condensed sedimentation ahead of Northern Graben extension and progradation of the modern continental margin
The middle Pliocene-Pleistocene progradation of the Giant Foresets Formation in Taranaki Basin built up the modern continental margin offshore from western North Island. The late Miocene to early Pliocene interval preceding this progradation was characterised in northern Taranaki Basin by the accumulation of hemipelagic mudstone (Manganui Formation), volcaniclastic sediments (Mohakatino Formation), and marl (Ariki Formation), all at bathyal depths. The Manganui Formation has generally featureless wireline log signatures and moderate to low amplitude seismic reflection characteristics. Mohakatino Formation is characterised by a sharp decrease in the GR log value at its base, a blocky GR log motif reflecting sandstone packets, and erratic resistivity logs. Seismic profiles show bold laterally continuous reflectors. The Ariki Formation has a distinctive barrel-shaped to blocky GR log motif. This signature is mirrored by the SP log and often by an increase in resistivity values through this interval. The Ariki Formation comprises (calcareous) marl made up of abundant planktic foraminifera, is 109 m thick in Ariki-1, and accumulated over parts of the Western Stable Platform and beneath the fill of the Northern Graben. It indicates condensed sedimentation reflecting the distance of the northern region from the contemporary continental margin to the south
Unified first law of black-hole dynamics and relativistic thermodynamics
A unified first law of black-hole dynamics and relativistic thermodynamics is
derived in spherically symmetric general relativity. This equation expresses
the gradient of the active gravitational energy E according to the Einstein
equation, divided into energy-supply and work terms. Projecting the equation
along the flow of thermodynamic matter and along the trapping horizon of a
blackhole yield, respectively, first laws of relativistic thermodynamics and
black-hole dynamics. In the black-hole case, this first law has the same form
as the first law of black-hole statics, with static perturbations replaced by
the derivative along the horizon. There is the expected term involving the area
and surface gravity, where the dynamic surface gravity is defined as in the
static case but using the Kodama vector and trapping horizon. This surface
gravity vanishes for degenerate trapping horizons and satisfies certain
expected inequalities involving the area and energy. In the thermodynamic case,
the quasi-local first law has the same form, apart from a relativistic factor,
as the classical first law of thermodynamics, involving heat supply and
hydrodynamic work, but with E replacing the internal energy. Expanding E in the
Newtonian limit shows that it incorporates the Newtonian mass, kinetic energy,
gravitational potential energy and thermal energy. There is also a weak type of
unified zeroth law: a Gibbs-like definition of thermal equilibrium requires
constancy of an effective temperature, generalising the Tolman condition and
the particular case of Hawking radiation, while gravithermal equilibrium
further requires constancy of surface gravity. Finally, it is suggested that
the energy operator of spherically symmetric quantum gravity is determined by
the Kodama vector, which encodes a dynamic time related to E.Comment: 18 pages, TeX, expanded somewhat, to appear in Class. Quantum Gra
Competency Requirements for Organization Development Professionals Based on Practitioner Critical Incident Interview Data
Organization Development practitioner competence was studied using the critical incident technique. The data were collected from 23 organization development practitioners in Oregon and Washington and sorted into 15 skill categories. Interjudge reliability exceeded 75% in the sorting of the incidents into separate groups. Implications for defining competency criteria for the OD professional are discussed in terms of the taxonomy developed
The bias of the submillimetre galaxy population: SMGs are poor tracers of the most massive structures in the z ~ 2 Universe
It is often claimed that overdensities of (or even individual bright)
submillimetre-selected galaxies (SMGs) trace the assembly of the most-massive
dark matter structures in the Universe. We test this claim by performing a
counts-in-cells analysis of mock SMG catalogues derived from the Bolshoi
cosmological simulation to investigate how well SMG associations trace the
underlying dark matter structure. We find that SMGs exhibit a relatively
complex bias: some regions of high SMG overdensity are underdense in terms of
dark matter mass, and some regions of high dark matter overdensity contain no
SMGs. Because of their rarity, Poisson noise causes scatter in the SMG
overdensity at fixed dark matter overdensity. Consequently, rich associations
of less-luminous, more-abundant galaxies (i.e. Lyman-break galaxy analogues)
trace the highest dark matter overdensities much better than SMGs. Even on
average, SMG associations are relatively poor tracers of the most significant
dark matter overdensities because of 'downsizing': at z < ~2.5, the
most-massive galaxies that reside in the highest dark matter overdensities have
already had their star formation quenched and are thus no longer SMGs. At a
given redshift, of the 10 per cent most-massive overdensities, only ~25 per
cent contain at least one SMG, and less than a few per cent contain more than
one SMG.Comment: 6 pages, 3 figures, 1 table; accepted for publication in MNRAS; minor
revisions from previous version, conclusions unchange
A complete distribution of redshifts for sub-millimetre galaxies in the SCUBA-2 Cosmology Legacy Survey UDS field
This is a pre-copyedited, author-produced PDF of an article accepted for publication in Monthly Notices of the Royal Astronomical Society following peer review. Available online at https://doi.org/10.1093/mnras/stx1689. © 2017 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.Sub-milllimetre galaxies (SMGs) are some of the most luminous star-forming galaxies in the Universe, however their properties remain hard to determine due to the difficulty of identifying their optical\slash near-infrared counterparts. One of the key steps to determining the nature of SMGs is measuring a redshift distribution representative of the whole population. We do this by applying statistical techniques to a sample of 761 850m sources from the SCUBA-2 Cosmology Legacy Survey observations of the UKIDSS Ultra-Deep Survey (UDS) Field. We detect excess galaxies around per cent of the 850m positions in the deep UDS catalogue, giving us the first 850m selected sample to have virtually complete optical\slash near-infrared redshift information. Under the reasonable assumption that the redshifts of the excess galaxies are representative of the SMGs themselves, we derive a median SMG redshift of , with 68 per cent of SMGs residing between $1.07Peer reviewedFinal Accepted Versio
A Systematic Review and Thematic Synthesis of Qualitative Literature on Personal Recovery and Voice Hearing.
Personal recovery literature has been influential in the conceptualisation of emotional distress and service provision. While personal recovery in psychosis has been well-studied, voice hearing literature has not been reviewed to elucidate recovery processes. Five databases were systematically searched to identify relevant qualitative recovery literature. 12 eligible studies were included in this review and an appraisal tool was applied to assess quality. Thematic synthesis was used to examine results. Three superordinate themes were found relating to 'Recovery Phases', 'Recovery Facilitators' and 'Barriers to Recovery'. Papers included descriptions of finding voices distressing initially yet moving toward integrating and accepting voices. Searching for meaning versus seeking distance from voices were pivotal processes to recovery pathways. Enabling and disrupting recovery experiences are discussed within a proposed model. Recovery in voice hearing is an individual and potentially ongoing process. Future research should seek to examine recovery factors in voice hearing longitudinally and add further evidence to the supportive role services can play in recovery and voice hearing. [Abstract copyright: This article is protected by copyright. All rights reserved.
- …