81 research outputs found

    Adventage of mesenchymal stem cells (MSC) expansion directly from purified bone marrow CD105^+ and CD271^+ cells

    Get PDF
    Mesenchymal Stem Cells (MSC) are employed in gene and cellular therapies. Routinely MSC are isolated from bone marrow mononuclear cells (MNC) by plastic adherence. Here we compared new isolation strategies of bone marrow MSC including immunodepletion of hematopoietic cells and immunomagnetic isolation of CD105+ and CD271+ populations. Four fractions were obtained: MNC MSC, RosetteSep-isolated MSC, CD105+ and CD271+ sorted MSC. We evaluated i) number of CFU-F colonies, ii) cell phenotype, iii) in vitro differentiation of expanded cells and iv) expression of osteo/adipogenesis related genes. Results: Average number of day 9 CFU-F colonies was the highest for CD271 positive fraction. Real-Time PCR analysis revealed expression of RUNX2, PPARgamma and N-cadherin in isolated cells, particularly high in CD271+ cells. Expression of CD105, CD166, CD44, CD73 antigens was comparable for all expanded populations (over 90%). We observed various levels of hematopoietic contamination with the highest numbers of CD45+ cells in MNC-MSC fraction and the lowest in CD105+ and CD271+ fractions. Cells of all the fractions were CD34 antigen negative. Expanded CD105 and CD271 populations showed higher level of RUNX2, osteocalcin, PTHR, leptin, PPARgamma2 and aggrecan1 genes except for alpha1 collagen. After osteogenic differentiation CD105+ and CD271+ populations showed lower expression of RUNX, PPARgamma2 and also lower expression of osteocalcin and PTHR than MNC, with comparable alpha1-collagen expression. Chondrogenic and adipogenic gene expression was higher in MNC. More clonogenic CD105+ and particularly CD271+ cells, which seem to be the most homogenous fractions based on Real-Time PCR and immunostaining data, are better suited for MSC expansion

    Polybrene Inhibits Human Mesenchymal Stem Cell Proliferation during Lentiviral Transduction

    Get PDF
    Human mesenchymal stem cells (hMSCs) can be engineered to express specific genes, either for their use in cell-based therapies or to track them in vivo over long periods of time. To obtain long-term expression of these genes, a lentivirus- or retrovirus-mediated cell transduction is often used. However, given that the efficiency with these viruses is typically low in primary cells, additives such as polybrene are always used for efficient viral transduction. Unfortunately, as presented here, exposure to polybrene alone at commonly used concentratons (1–8 ”g/mL) negatively impacts hMSC proliferation in a dose-dependent manner as measured by CyQUANT, EdU incorporation, and cell cycle analysis. This inhibition of proliferation was observable in culture even 3 weeks after exposure. Culturing the cells in the presence of FGF-2, a potent mitogen, did not abrogate this negative effect of polybrene. In fact, the normally sharp increase in hMSC proliferation that occurs during the first days of exposure to FGF-2 was absent at 4 ”g/mL or higher concentrations of polybrene. Similarly, the effect of stimulating cell proliferation under simulated hypoxic conditions was also decreased when cells were exposed to polybrene, though overall proliferation rates were higher. The negative influence of polybrene was, however, reduced when the cells were exposed to polybrene for a shorter period of time (6 hr vs 24 hr). Thus, careful evaluation should be done when using polybrene to aid in lentiviral transduction of human MSCs or other primary cells, especially when cell number is critical

    Different populations and sources of human mesenchymal stem cells (MSC): A comparison of adult and neonatal tissue-derived MSC

    Get PDF
    The mesenchymal stroma harbors an important population of cells that possess stem cell-like characteristics including self renewal and differentiation capacities and can be derived from a variety of different sources. These multipotent mesenchymal stem cells (MSC) can be found in nearly all tissues and are mostly located in perivascular niches. MSC have migratory abilities and can secrete protective factors and act as a primary matrix for tissue regeneration during inflammation, tissue injuries and certain cancers

    LacZ and interleukin-3 expression in vivo after retroviral transduction of marrow-derived human osteogenic mesenchymal progenitors.

    No full text
    Human marrow-derived mesenchymal progenitor cells (hMPCs), which have the capacity for osteogenic and marrow stromal differentiation, were transduced with the myeloproliferative sarcoma virus (MPSV)-based retrovirus, vM5LacZ, that contains the LacZ and neo genes. Stable transduction and gene expression occurred in 18% of cells. After culture expansion and selection in G418, approximately 70% of neo(r) hMPCs co-expressed LacZ. G418-selected hMPC retain their osteogenic potential and form bone in vivo when seeded into porous calcium phosphate ceramic cubes implanted subcutaneously into SCID mice. LacZ expression was evident within osteoblasts and osteocytes in bone developing within the ceramics 6 and 9 weeks after implantation. Likewise, hMPCs transduced with human interleukin-3 (hIL-3) cDNA, adhered to ceramic cubes and implanted into SCID mice, formed bone and secreted detectable levels of hIL-3 into the systemic circulation for at least 12 weeks. These data indicate that genetically transduced, culture-expanded bone marrow-derived hMPCs retain a precursor phenotype and maintain similar levels of transgene expression during osteogenic lineage commitment and differentiation in vivo. Because MPCs have been shown to differentiate into bone, cartilage, and tendon, these cells may be a useful target for gene therapy
    • 

    corecore