133 research outputs found
An analysis of the FIR/RADIO Continuum Correlation in the Small Magellanic Cloud
The local correlation between far-infrared (FIR) emission and radio-continuum
(RC) emission for the Small Magellanic Cloud (SMC) is investigated over scales
from 3 kpc to 0.01 kpc. Here, we report good FIR/RC correlation down to ~15 pc.
The reciprocal slope of the FIR/RC emission correlation (RC/FIR) in the SMC is
shown to be greatest in the most active star forming regions with a power law
slope of ~1.14 indicating that the RC emission increases faster than the FIR
emission. The slope of the other regions and the SMC are much flatter and in
the range of 0.63-0.85. The slopes tend to follow the thermal fractions of the
regions which range from 0.5 to 0.95. The thermal fraction of the RC emission
alone can provide the expected FIR/RC correlation. The results are consistent
with a common source for ultraviolet (UV) photons heating dust and Cosmic Ray
electrons (CRe-s) diffusing away from the star forming regions. Since the CRe-s
appear to escape the SMC so readily, the results here may not provide support
for coupling between the local gas density and the magnetic field intensity.Comment: 19 pages, 7 Figure
RAB11FIP5 Expression and Altered Natural Killer Cell Function Are Associated with Induction of HIV Broadly Neutralizing Antibody Responses
HIV-1 broadly neutralizing antibodies (bnAbs) are difficult to induce with vaccines but are generated in âź50% of HIV-1-infected individuals. Understanding the molecular mechanisms of host control of bnAb induction is critical to vaccine design. Here, we performed a transcriptome analysis of blood mononuclear cells from 47 HIV-1-infected individuals who made bnAbs and 46 HIV-1-infected individuals who did not and identified in bnAb individuals upregulation of RAB11FIP5, encoding a Rab effector protein associated with recycling endosomes. Natural killer (NK) cells had the highest differential expression of RAB11FIP5, which was associated with greater dysregulation of NK cell subsets in bnAb subjects. NK cells from bnAb individuals had a more adaptive/dysfunctional phenotype and exhibited impaired degranulation and cytokine production that correlated with RAB11FIP5 transcript levels. Moreover, RAB11FIP5 overexpression modulated the function of NK cells. These data suggest that NK cells and Rab11 recycling endosomal transport are involved in regulation of HIV-1 bnAb development. Generation of broadly neutralizing antibodies against HIV-1 in humans is linked to the expression of a specific recycling endosome-associated effector in natural killer cells
Neutralizing antibody vaccine for pandemic and pre-emergent coronaviruses
Betacoronaviruses (betaCoVs) caused the severe acute respiratory syndrome (SARS) and Middle East Respiratory Syndrome (MERS) outbreaks, and the SARS-CoV-2 pandemic1â4. Vaccines that elicit protective immunity against SARS-CoV-2 and betaCoVs circulating in animals have the potential to prevent future betaCoV pandemics. Here, we show that macaque immunization with a multimeric SARS-CoV-2 receptor binding domain (RBD) nanoparticle adjuvanted with 3M-052/Alum elicited cross-neutralizing antibody (cross-nAb) responses against batCoVs, SARS-CoV-1, SARS-CoV-2, and SARS-CoV-2 variants B.1.1.7, P.1, and B.1.351. Nanoparticle vaccination resulted in a SARS-CoV-2 reciprocal geometric mean neutralization ID50 titer of 47,216, and protection against SARS-CoV-2 in macaque upper and lower respiratory tracts. Importantly, nucleoside-modified mRNA encoding a stabilized transmembrane spike or monomeric RBD also induced SARS-CoV-1 and batCoV cross-nAbs, albeit at lower titers. These results demonstrate current mRNA vaccines may provide some protection from future zoonotic betaCoV outbreaks, and provide a platform for further development of pan-betaCoV vaccines
Expedition 369 methods
This chapter documents the procedures and methods used in the shipboard laboratories during International Ocean Discovery Program (IODP) Expedition 369. This introductory section in particular provides a rationale for the site locations and an overview of IODP depth conventions, curatorial procedures, and general core handling/analyses during Expedition 369. Subsequent sections describe specific laboratory procedures and instruments in more detail. This information only applies to shipboard work described in the Proceedings volume; methods used in shore-based analyses of Expedition 369 samples and/or data will be described in various scientific contributions in the open peer-reviewed literature and the Expedition Research Results chapters of this Proceedingsvolume
- âŚ