19 research outputs found

    Prediction of Ideas Number During a Brainstorming Session

    Get PDF
    International audienceIn this paper, we present an approach allowing the prediction of ideas number during a brainstorming session. This prediction is based on two dynamic models of brainstorming, the non-cognitive and the cognitive models proposed by Brown and Paulus (Small Group Res 27(1):91–114, 1996). These models describe for each participant, the evolution of ideas number over time, and are formalized by differential equations. Through solution functions of these models, we propose to calculate the number of ideas of each participant on any time intervals and thus in the future (called prediction). To be able to compute solution functions, it is necessary to determine the parameters of these models. In our approach, we use optimization model for model parameters calculation in which solution functions are approximated by numerical methods. We developed two generic optimization models, one based on Euler’s and the other on the fourth order Runge–Kutta’s numerical methods for the solving of differential equations, and we apply them to the non-cognitive and respectively to the cognitive models. Through some feasibility tests, we show the adequacy of the proposed approach to our prediction context

    PCS: A CASE Tool for Distributed Group Software Development

    No full text

    Solvent-free surface modification of milled carbon fiber using resonant acoustic mixing

    No full text
    Resonant Acoustic Mixing (RAM) is used to rapidly modify the surface of milled carbon fiber using diazonium salts in solvent free conditions. This novel method allows tuning of the surface properties of this material and reduces the environmental footprint usually associated with surface modification of carbon fiber (discontinuous or otherwise). As a proof of concept, fluorine-containing diazonium salts were successfully grafted as determined by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX) and an increase in water contact angle (WCA) of the milled carbon fiber samples (+15°). Atomic Force Microscopy (AFM) together with SEM revealed the surface structure and integrity of the milled carbon fibers could be maintained despite vigorous mixing conditions. Using RAM proved more efficient than positive controls produced under thermal conditions in solvent

    Heightened NTPDase-1/CD39 expression and angiogenesis in radiation proctitis

    No full text
    Radiation proctitis is an inflammatory process associated with persistent and refractory lower gastrointestinal bleeding. Purinergic signaling regulates hemostasis, inflammation, and angiogenesis. For example, CD39, the vascular ectonucleotidase, blocks platelet activation and is required for angiogenesis. Whether CD39 expression is affected by radiation injury is unknown. The aim of this work was to study CD39 expression patterns after clinical radiation injury to the rectum. We prospectively enrolled eight patients with radiation proctitis and five gender-matched controls. Biopsies were taken from normal-appearing rectal mucosa of controls and from the normal sigmoid and abnormal rectum of patients. Expression patterns of CD39, P2Y2 receptor, CD31, CD61 integrin, and vascular endothelial growth factor receptor 2 were examined by immunostaining; levels of CD39 were further evaluated by Western blots. Chronic inflammatory lesions of radiation proctitis were associated with heightened levels of angiogenesis. Immunohistochemical stains showed increased vascular expression of CD39, as confirmed by Western blots. CD39 was co-localized with vascular endothelial markers CD31 and CD61 integrin, as well as expressed by stromal tissues. Development of neovasculature and associated CD39 expression in radiation proctitis may be associated with the chronic, refractory bleeding observed in this condition

    The MEK1/2 inhibitor, selumetinib (AZD6244; ARRY-142886), enhances anti-tumour efficacy when combined with conventional chemotherapeutic agents in human tumour xenograft models

    Get PDF
    BACKGROUND: The Ras/RAF/MEK/ERK pathway is frequently deregulated in cancer and a number of inhibitors that target this pathway are currently in clinical development. It is likely that clinical testing of these agents will be in combination with standard therapies to harness the apoptotic potential of both the agents. To support this strategy, it has been widely observed that a number of chemotherapeutics stimulate the activation of several intracellular signalling cascades including Ras/RAF/MEK/ERK. The MEK1/2 inhibitor selumetinib has been shown to have anti-tumour activity and induce apoptotic cell death as a monotherapy. METHODS: The aim of this study was to identify agents, which would be likely to offer clinical benefit when combined with selumetinib. Here, we used human tumour xenograft models and assessed the effects combining standard chemotherapeutic agents with selumetinib on tumour growth. In addition, we analysed tumour tissue to determine the mechanistic effects of these combinations. RESULTS: Combining selumetinib with the DNA-alkylating agent, temozolomide (TMZ), resulted in enhanced tumour growth inhibition compared with monotherapies. Biomarker studies highlighted an increase in ÎłH2A.X suggesting that selumetinib is able to enhance the DNA damage induced by TMZ alone. In several models we observed that continuous exposure to selumetinib in combination with docetaxel results in tumour regression. Scheduling of docetaxel before selumetinib was more beneficial than when selumetinib was dosed before docetaxel and demonstrated a pro-apoptotic phenotype. Similar results were seen when selumetinib was combined with the Aurora B inhibitor barasertib. CONCLUSION: The data presented suggests that MEK inhibition in combination with several standard chemotherapeutics or an Aurora B kinase inhibitor is a promising clinical strategy
    corecore