26,550 research outputs found

    Microstructured cladding elements to enhance performance and flexibility of large mode area leakage channel fibers

    No full text
    Large mode area fibers are imperative for scaling up the average power of fiber lasers. Single-mode behavior and low FM loss are the crucial functionalities for these fibers. However, for key applications such as picosecond pulsed lasers, the device length needs to at least a few meters. This makes a certain degree of bend tolerance a prerequisite in the fiber design. While rod-type PCFs have been very successful in offering large mode areas, their rigid configuration limits their application domain. Alternatively, leakage channel fibers (LCFs) have shown a great potential for offering substantial bend tolerance along with large mode areas. However, the proposed use of Fluorine-doped rods in the all-solid version limits their practical design space. Here, we propose a novel design concept to attain single-material, large mode area fibers (mode area >~ 1000µm2) with effectively single mode operation coupled with bending characteristics comparable to all-solid LCFs and greater design flexibility and easier splicing that is comparable to rod-type PCFs

    Mindfulness: Method and Process

    Get PDF

    Prompt Beta Spectroscopy as a Diagnostic for Mix in Ignited NIF Capsules

    Full text link
    The National Ignition Facility (NIF) technology is designed to drive deuterium-tritium (DT) internal confinement fusion (ICF) targets to ignition using indirect radiation from laser beam energy captured in a hohlraum. Hydrodynamical instabilities at interfaces in the ICF capsule leading to mix between the DT fue l and the ablator shell material are of fundamental physical interest and can affect the performance characteristics of the capsule. In this Letter we describe new radiochemical diagnostics for mix processes in ICF capsules with plastic or Be (0.9%Cu) ablator shells. Reactions of high-energy tritons with shell material produce high-energy β\beta-emitters. We show that mix between the DT fuel and the shell material enhances high-energy prompt beta emission from these reactions by more than an order of magnitude over that expected in the absence of mix

    Psychological Flexibility, ACT, and Organizational Behavior

    Get PDF
    This paper offers organizational behavior management (OBM) a behavior analytically consistent way to expand its analysis of, and methods for changing, organizational behavior. It shows how Relational Frame Theory (RFT) suggests that common, problematic, psychological processes emerge from language itself, and they produce psychological inflexibility. Research suggests that an applied extension of RFT, Acceptance and Commitment Therapy, has led to new interventions that increase psychological flexibility and, thereby enhance, organizational behavior and health

    Completeness and Incompleteness of Synchronous Kleene Algebra

    Get PDF
    Synchronous Kleene algebra (SKA), an extension of Kleene algebra (KA), was proposed by Prisacariu as a tool for reasoning about programs that may execute synchronously, i.e., in lock-step. We provide a countermodel witnessing that the axioms of SKA are incomplete w.r.t. its language semantics, by exploiting a lack of interaction between the synchronous product operator and the Kleene star. We then propose an alternative set of axioms for SKA, based on Salomaa's axiomatisation of regular languages, and show that these provide a sound and complete characterisation w.r.t. the original language semantics.Comment: Accepted at MPC 201

    A heralded quantum gate between remote quantum memories

    Full text link
    We demonstrate a probabilistic entangling quantum gate between two distant trapped ytterbium ions. The gate is implemented between the hyperfine "clock" state atomic qubits and mediated by the interference of two emitted photons carrying frequency encoded qubits. Heralded by the coincidence detection of these two photons, the gate has an average fidelity of 90+-2%. This entangling gate together with single qubit operations is sufficient to generate large entangled cluster states for scalable quantum computing

    Aqueous-Based Extrusion Fabrication of Ceramics on Demand

    Get PDF
    Aqueous-Based Extrusion Fabrication is an additive manufacturing technique that extrudes ceramic slurries of high solids loading layer by layer for part fabrication. The material reservoir in a previously developed system has been modified to allow for starting and stopping of the extrusion process on demand. Design pros and cons are examined and a comparison between two material reservoir designs is made. Tests are conducted to determine the optimal deposition parameters for starting and stopping the extrudate on demand. The collected test data is used for the development of a deposition strategy that improves material deposition consistency, including reduced material buildup at sharp corners. Example parts are fabricated using the deposition strategy and hardware design.Mechanical Engineerin

    Entanglement of Atomic Qubits using an Optical Frequency Comb

    Full text link
    We demonstrate the use of an optical frequency comb to coherently control and entangle atomic qubits. A train of off-resonant ultrafast laser pulses is used to efficiently and coherently transfer population between electronic and vibrational states of trapped atomic ions and implement an entangling quantum logic gate with high fidelity. This technique can be extended to the high field regime where operations can be performed faster than the trap frequency. This general approach can be applied to more complex quantum systems, such as large collections of interacting atoms or molecules.Comment: 4 pages, 5 figure
    • …
    corecore