7,139 research outputs found

    Features in the ion emission of Cu, Al, and C plasmas produced by ultrafast laser ablation

    Get PDF
    © 2015 AIP Publishing LLC. The bi-modal nature of charge integrated ion kinetic energy distributions, which result from ultrafast laser produced plasmas, is discussed in this paper. A negatively biased Faraday cup was used as a charge collector to measure ion distributions from three different solid targets that had been irradiated with an ultrafast laser in the fluence range 0.1-1 J/cm2. A bi-modal time of flight distribution is found for all three targets (C, Al, and Cu). In the case of the metallic targets (Al and Cu), high- and low-kinetic energy peaks exhibit quite different dependencies on laser fluence, whereas for the semi-metallic target (C), both peaks scale similarly with ultrafast laser fluence. The results are discussed within the framework of a one dimensional capacitor model resulting in ion acceleration

    Structure and Composition of Pollen Grains of Vernal Plants

    Get PDF
    Among the first morphological studies of pollen were those of Malpighi (1686) and of Grew (1675). While numerous articles on their structure and composition of pollen have been contributed, the amount of data available in application to several problems involved in such study is yet somewhat fragmentar

    NMR Time Reversal Experiments in Highly Polarised Liquid 3He-4He Mixtures

    Full text link
    Long-range magnetic interactions in highly magnetised liquids (laser-polarised 3He-4He dilute mixtures at 1 K in our experiment) introduce a significant non-linear and non-local contribution to the evolution of nuclear magnetisation that leads to instabilities during free precession. We recently demonstrated that a multi-echo NMR sequence, based on the magic sandwich pulse scheme developed for solid-state NMR, can be used to stabilise the magnetisation against the effect of distant dipolar fields. Here, we report investigations of echo attenuation in an applied field gradient that show the potential of this NMR sequence for spin diffusion measurements at high magnetisation densities.Comment: Accepted for publication in the Journal of Low Temperature Physic

    No Evidence for Orbital Loop Currents in Charge Ordered YBa2_2Cu3_3O6+x_{6+x} from Polarized Neutron Diffraction

    Get PDF
    It has been proposed that the pseudogap state of underdoped cuprate superconductors may be due to a transition to a phase which has circulating currents within each unit cell. Here, we use polarized neutron diffraction to search for the corresponding orbital moments in two samples of underdoped YBa2_2Cu3_3O6+x_{6+x} with doping levels p=0.104p=0.104 and 0.123. In contrast to some other reports using polarized neutrons, but in agreement with nuclear magnetic resonance and muon spin rotation measurements, we find no evidence for the appearance of magnetic order below 300 K. Thus, our experiment suggests that such order is not an intrinsic property of high-quality cuprate superconductor single crystals. Our results provide an upper bound for a possible orbital loop moment which depends on the pattern of currents within the unit cell. For example, for the CC-θII\theta_{II} pattern proposed by Varma, we find that the ordered moment per current loop is less than 0.013 μB\mu_B for p=0.104p=0.104.Comment: Comments in arXiv:1710.08173v1 fully addresse

    Convergence Conditions for Random Quantum Circuits

    Full text link
    Efficient methods for generating pseudo-randomly distributed unitary operators are needed for the practical application of Haar distributed random operators in quantum communication and noise estimation protocols. We develop a theoretical framework for analyzing pseudo-random ensembles generated through a random circuit composition. We prove that the measure over random circuits converges exponentially (with increasing circuit length) to the uniform (Haar) measure on the unitary group and describe how the rate of convergence may be calculated for specific applications.Comment: 4 pages (revtex), comments welcome. v2: reference added, title changed; v3: published version, minor changes, references update

    Relativistically covariant state-dependent cloning of photons

    Full text link
    The influence of the relativistic covariance requirement on the optimality of the symmetric state-dependent 1 -> 2 cloning machine is studied. Namely, given a photonic qubit whose basis is formed from the momentum-helicity eigenstates, the change to the optimal cloning fidelity is calculated taking into account the Lorentz covariance unitarily represented by Wigner's little group. To pinpoint some of the interesting results, we found states for which the optimal fidelity of the cloning process drops to 2/3 which corresponds to the fidelity of the optimal classical cloner. Also, an implication for the security of the BB84 protocol is analyzed.Comment: corrected, rewritten and accepted in PR

    Bolometric technique for high-resolution broadband microwave spectroscopy of ultra-low-loss samples

    Full text link
    A novel low temperature bolometric method has been devised and implemented for high-precision measurements of the microwave surface resistance of small single-crystal platelet samples having very low absorption, as a continuous function of frequency. The key to the success of this non-resonant method is the in-situ use of a normal metal reference sample that calibrates the absolute rf field strength. The sample temperature can be controlled independently of the 1.2 K liquid helium bath, allowing for measurements of the temperature evolution of the absorption. However, the instrument's sensitivity decreases at higher temperatures, placing a limit on the useful temperature range. Using this method, the minimum detectable power at 1.3 K is 1.5 pW, corresponding to a surface resistance sensitivity of \approx1 μΩ\mu\Omega for a typical 1 mm×\times1 mm platelet sample.Comment: 13 pages, 12 figures, submitted to Review of Scientific Instrument

    Superconductivity induced by spark erosion in ZrZn2

    Full text link
    We show that the superconductivity observed recently in the weak itinerant ferromagnet ZrZn2 [C. Pfleiderer et al., Nature (London) 412, 58 (2001)] is due to remnants of a superconducting layer induced by spark erosion. Results of resistivity, susceptibility, specific heat and surface analysis measurements on high-quality ZrZn2 crystals show that cutting by spark erosion leaves a superconducting surface layer. The resistive superconducting transition is destroyed by chemically etching a layer of 5 microns from the sample. No signature of superconductivity is observed in rho(T) of etched samples at the lowest current density measured, J=675 Am-2, and at T < 45 mK. EDX analysis shows that spark-eroded surfaces are strongly Zn depleted. The simplest explanation of our results is that the superconductivity results from an alloy with higher Zr content than ZrZn2.Comment: Final published versio

    Competing charge, spin, and superconducting orders in underdoped YBa2Cu3Oy

    Get PDF
    To explore the doping dependence of the recently discovered charge density wave (CDW) order in YBa2Cu3Oy, we present a bulk-sensitive high-energy x-ray study for several oxygen concentrations, including strongly underdoped YBa2Cu3O6.44. Combined with previous data around the so-called 1/8 doping, we show that bulk CDW order exists at least for hole concentrations (p) in the CuO2 planes of 0.078 <~ p <~ 0.132. This implies that CDW order exists in close vicinity to the quantum critical point for spin density wave (SDW) order. In contrast to the pseudogap temperature T*, the onset temperature of CDW order decreases with underdoping to T_CDW ~ 90K in YBa2Cu3O6.44. Together with a weakened order parameter this suggests a competition between CDW and SDW orders. In addition, the CDW order in YBa2Cu3O6.44 shows the same type of competition with superconductivity as a function of temperature and magnetic field as samples closer to p = 1/8. At low p the CDW incommensurability continues the previously reported linear increasing trend with underdoping. In the entire doping range the in-plane correlation length of the CDW order in b-axis direction depends only very weakly on the hole concentration, and appears independent of the type and correlation length of the oxygen-chain order. The onset temperature of the CDW order is remarkably close to a temperature T^\dagger that marks the maximum of 1/(T_1T) in planar 63^Cu NQR/NMR experiments, potentially indicating a response of the spin dynamics to the formation of the CDW. Our discussion of these findings includes a detailed comparison to the charge stripe order in La2-xBaxCuO4.Comment: 11 pages, 5 figure
    corecore