7,991 research outputs found
Spectral Analysis Program (SAP)
Program eliminates or reduces time-consuming aspects of computation of power spectrum for high-frequency communication system. This program was written in FORTRAN IV for UNIVAC 1230 or 1108 computer
Random subspaces for encryption based on a private shared Cartesian frame
A private shared Cartesian frame is a novel form of private shared
correlation that allows for both private classical and quantum communication.
Cryptography using a private shared Cartesian frame has the remarkable property
that asymptotically, if perfect privacy is demanded, the private classical
capacity is three times the private quantum capacity. We demonstrate that if
the requirement for perfect privacy is relaxed, then it is possible to use the
properties of random subspaces to nearly triple the private quantum capacity,
almost closing the gap between the private classical and quantum capacities.Comment: 9 pages, published versio
Modeling and Analysis of Power Processing Systems
The feasibility of formulating a methodology for the modeling and analysis of aerospace electrical power processing systems is investigated. It is shown that a digital computer may be used in an interactive mode for the design, modeling, analysis, and comparison of power processing systems
Multi-kilowatt modularized spacecraft power processing system development
A review of existing information pertaining to spacecraft power processing systems and equipment was accomplished with a view towards applicability to the modularization of multi-kilowatt power processors. Power requirements for future spacecraft were determined from the NASA mission model-shuttle systems payload data study which provided the limits for modular power equipment capabilities. Three power processing systems were compared to evaluation criteria to select the system best suited for modularity. The shunt regulated direct energy transfer system was selected by this analysis for a conceptual design effort which produced equipment specifications, schematics, envelope drawings, and power module configurations
Observation of Weak-Limit Quasiparticle Scattering via Broadband Microwave Spectroscopy of a d-Wave Superconductor
There has long been a discrepancy between microwave conductivity measurements
in high temperature superconductors and the conductivity spectrum expected in
the simplest models for impurity scattering in a d-wave superconductor. Here we
present a new type of broadband measurement of microwave surface resistance
that finally shows some of the spectral features expected for a d_{x^2-y^2}
pairing state. Cusp-shaped conductivity spectra, consistent with weak impurity
scattering of nodal quasiparticles, were obtained in the 0.6-21 GHz frequency
range in highly ordered crystals of YBa_2Cu_3O_{6.50} and YBa_2Cu_3O_{6.99}.Comment: 5 pages, 4 figures, submitted to Phys. Rev. Let
No Evidence for Orbital Loop Currents in Charge Ordered YBaCuO from Polarized Neutron Diffraction
It has been proposed that the pseudogap state of underdoped cuprate
superconductors may be due to a transition to a phase which has circulating
currents within each unit cell. Here, we use polarized neutron diffraction to
search for the corresponding orbital moments in two samples of underdoped
YBaCuO with doping levels and 0.123. In contrast to
some other reports using polarized neutrons, but in agreement with nuclear
magnetic resonance and muon spin rotation measurements, we find no evidence for
the appearance of magnetic order below 300 K. Thus, our experiment suggests
that such order is not an intrinsic property of high-quality cuprate
superconductor single crystals. Our results provide an upper bound for a
possible orbital loop moment which depends on the pattern of currents within
the unit cell. For example, for the CC- pattern proposed by Varma,
we find that the ordered moment per current loop is less than 0.013 for
.Comment: Comments in arXiv:1710.08173v1 fully addresse
Bolometric technique for high-resolution broadband microwave spectroscopy of ultra-low-loss samples
A novel low temperature bolometric method has been devised and implemented
for high-precision measurements of the microwave surface resistance of small
single-crystal platelet samples having very low absorption, as a continuous
function of frequency. The key to the success of this non-resonant method is
the in-situ use of a normal metal reference sample that calibrates the absolute
rf field strength. The sample temperature can be controlled independently of
the 1.2 K liquid helium bath, allowing for measurements of the temperature
evolution of the absorption. However, the instrument's sensitivity decreases at
higher temperatures, placing a limit on the useful temperature range. Using
this method, the minimum detectable power at 1.3 K is 1.5 pW, corresponding to
a surface resistance sensitivity of 1 for a typical 1
mm1 mm platelet sample.Comment: 13 pages, 12 figures, submitted to Review of Scientific Instrument
Competing charge, spin, and superconducting orders in underdoped YBa2Cu3Oy
To explore the doping dependence of the recently discovered charge density
wave (CDW) order in YBa2Cu3Oy, we present a bulk-sensitive high-energy x-ray
study for several oxygen concentrations, including strongly underdoped
YBa2Cu3O6.44. Combined with previous data around the so-called 1/8 doping, we
show that bulk CDW order exists at least for hole concentrations (p) in the
CuO2 planes of 0.078 <~ p <~ 0.132. This implies that CDW order exists in close
vicinity to the quantum critical point for spin density wave (SDW) order. In
contrast to the pseudogap temperature T*, the onset temperature of CDW order
decreases with underdoping to T_CDW ~ 90K in YBa2Cu3O6.44. Together with a
weakened order parameter this suggests a competition between CDW and SDW
orders. In addition, the CDW order in YBa2Cu3O6.44 shows the same type of
competition with superconductivity as a function of temperature and magnetic
field as samples closer to p = 1/8. At low p the CDW incommensurability
continues the previously reported linear increasing trend with underdoping. In
the entire doping range the in-plane correlation length of the CDW order in
b-axis direction depends only very weakly on the hole concentration, and
appears independent of the type and correlation length of the oxygen-chain
order. The onset temperature of the CDW order is remarkably close to a
temperature T^\dagger that marks the maximum of 1/(T_1T) in planar 63^Cu
NQR/NMR experiments, potentially indicating a response of the spin dynamics to
the formation of the CDW. Our discussion of these findings includes a detailed
comparison to the charge stripe order in La2-xBaxCuO4.Comment: 11 pages, 5 figure
- …
