33 research outputs found

    A modified multi-patch technique for double-layered repair of ischemic posterior ventricular septal rupture

    No full text
    Abstract Background The rupture of the posterior ventricular septum after acute inferior myocardial infarction is more challenging to repair than ruptures in other sites since it is less accessible and anatomically restricted. We described a modification of Daggett’s original technique of multi-patch repair of ruptured posterior septum. Case presentation The technique was employed in the operation of a 67-year-old male who presented with severe heart failure at the 10th day after he developed inferior myocardial infarction. His ventricular septum had ruptured at the level between the posteromedial papillary muscle and the mitral annulus. A large endoventricular patch covered separately over the locally patched septal defect and the ventriculotomy defect which was going to be roofed eventually with an external patch. Both defects were then individually closed in double layers, holding a single continuous patch in common. The common use of a single patch expedited multilayered closure of the left ventricular defects and could minimize geometric remodeling of the covered area. The patches on both the endocardial and the epicardial sides avoided potentially fatal bleeding from the ventriculotomy site. The transmural mattress sutures incorporating ventriculotomy patches required minimal bites toward the posteromedial papillary muscle and mitral annulus, thereby preserving the mitral valve function. Conclusions Thus, the technique enhances the advantage of the left ventriculotomy in the repair of posterior septal rupture and avoids ventriculotomy-related morbidity

    Synthesis of an Ellagitannin Component, the Macaranoyl Group with a Tetra-ortho-Substituted Diaryl Ether Structure

    Get PDF
    Herein, a practical synthesis of the macaranoyl group contained in ellagitannins, i.e., a C-O digallate structure with a tetra-ortho-substituted diaryl ether bond, is described. The methodology involved an oxa-Michael addition/elimination reaction between a brominated ortho-quinone monoketal and a phenol with a hexahydroxydiphenoyl moiety in the presence of 18-crown-6 under dark conditions, followed by reductive aromatization. The existence of rotamers originating from the constructed ether moiety is discussed as well

    Introduction of 1-m MSBS in Tohoku University, New Device for Aerodynamics Measurements of the Sports Equipment

    No full text
    Support interference in wind tunnel testing is an unavoidable effect. It is difficult to measure the aerodynamic force acting on a model such as a ball owing to this effect [1]. A magnetic suspension and balance system (MSBS) suspends the model without any mechanical supports by using magnetic force, and at the same time, can measure the aerodynamic force acting on the model. The 1-m MSBS, located at the Institute of Fluid Science, Tohoku University, is the world’s largest MSBS. It has a 1-m-wide octagonal cross section. A sphere is taken as the experimental object, and the results of the aerodynamic force acting on it are presented. The diameter of the sphere is 150 mm, and its blockage ratio is 2.1%. The experiment was conducted at Reynolds numbers ranging from 0.5 × 105 to 4.7 × 105. It clearly shows the drag crisis at approximately Re = 3.7 × 105, and the fluctuation of the sphere abruptly increase around this region

    Exposure of the Yeast <i>Saccharomyces cerevisiae</i> to Functionalized Polystyrene Latex Nanoparticles: Influence of Surface Charge on Toxicity

    No full text
    Novel nanoparticles with unique physicochemical characteristics are being developed with increasing frequency, leading to higher probability of nanoparticle release and environmental accumulation. Therefore, it is important to assess the potential environmental and biological adverse effects of nanoparticles. In this study, we investigated the toxicity and behavior of surface-functionalized nanoparticles toward yeast (<i>Saccharomyces cerevisiae</i>). The colony count method and confocal microscopy were used to examine the cytotoxicity of manufactured polystyrene latex (PSL) nanoparticles with various functional groups (amine, carboxyl, sulfate, and nonmodified). <i>S. cerevisiae</i> were exposed to PSL nanoparticles (40 mg/L) dispersed in 5–154 mM NaCl solutions for 1 h. Negatively charged nanoparticles had little or no toxic effect. Interestingly, nanoparticles with positively charged amine groups (p-Amine) were not toxic in 154 mM NaCl, but highly toxic in 5 mM NaCl. Confocal microscopy indicated that in 154 mM NaCl, the p-Amine nanoparticles were internalized by endocytosis, whereas in 5 mM NaCl they covered the dead cell surfaces. This demonstrates that nanoparticle-induced cell death might to be related to their adhesion to cells rather than their internalization. Together, these findings identify important factors in determining nanoparticle toxicity that might affect their impact on the environment and human health

    Exposure of the Yeast <i>Saccharomyces cerevisiae</i> to Functionalized Polystyrene Latex Nanoparticles: Influence of Surface Charge on Toxicity

    No full text
    Novel nanoparticles with unique physicochemical characteristics are being developed with increasing frequency, leading to higher probability of nanoparticle release and environmental accumulation. Therefore, it is important to assess the potential environmental and biological adverse effects of nanoparticles. In this study, we investigated the toxicity and behavior of surface-functionalized nanoparticles toward yeast (<i>Saccharomyces cerevisiae</i>). The colony count method and confocal microscopy were used to examine the cytotoxicity of manufactured polystyrene latex (PSL) nanoparticles with various functional groups (amine, carboxyl, sulfate, and nonmodified). <i>S. cerevisiae</i> were exposed to PSL nanoparticles (40 mg/L) dispersed in 5–154 mM NaCl solutions for 1 h. Negatively charged nanoparticles had little or no toxic effect. Interestingly, nanoparticles with positively charged amine groups (p-Amine) were not toxic in 154 mM NaCl, but highly toxic in 5 mM NaCl. Confocal microscopy indicated that in 154 mM NaCl, the p-Amine nanoparticles were internalized by endocytosis, whereas in 5 mM NaCl they covered the dead cell surfaces. This demonstrates that nanoparticle-induced cell death might to be related to their adhesion to cells rather than their internalization. Together, these findings identify important factors in determining nanoparticle toxicity that might affect their impact on the environment and human health

    Exposure of the Yeast <i>Saccharomyces cerevisiae</i> to Functionalized Polystyrene Latex Nanoparticles: Influence of Surface Charge on Toxicity

    No full text
    Novel nanoparticles with unique physicochemical characteristics are being developed with increasing frequency, leading to higher probability of nanoparticle release and environmental accumulation. Therefore, it is important to assess the potential environmental and biological adverse effects of nanoparticles. In this study, we investigated the toxicity and behavior of surface-functionalized nanoparticles toward yeast (<i>Saccharomyces cerevisiae</i>). The colony count method and confocal microscopy were used to examine the cytotoxicity of manufactured polystyrene latex (PSL) nanoparticles with various functional groups (amine, carboxyl, sulfate, and nonmodified). <i>S. cerevisiae</i> were exposed to PSL nanoparticles (40 mg/L) dispersed in 5–154 mM NaCl solutions for 1 h. Negatively charged nanoparticles had little or no toxic effect. Interestingly, nanoparticles with positively charged amine groups (p-Amine) were not toxic in 154 mM NaCl, but highly toxic in 5 mM NaCl. Confocal microscopy indicated that in 154 mM NaCl, the p-Amine nanoparticles were internalized by endocytosis, whereas in 5 mM NaCl they covered the dead cell surfaces. This demonstrates that nanoparticle-induced cell death might to be related to their adhesion to cells rather than their internalization. Together, these findings identify important factors in determining nanoparticle toxicity that might affect their impact on the environment and human health
    corecore