248 research outputs found

    Estimation of Ground Resisitivity Distribution Using 3D DRM Charge Simulation Modelling

    Get PDF
    Resistivity distribution sounding of the non-homogeneous earth is important for electrical ground system design, geophysical prospecting and survey or monitoring the groundwater flow level. The previous paper presented that the direct inversion of the electric resistivity distribution in a domain is possible from the impedance data measured over the domain boundary using the dual reciprocity boundary element modelling in two-dimentional field [1]. The proposed inversion technique is extended to the distribution in three-dimensional space [2]. This technique is capable of inversion without iteration and meshing of the domain. Electric field with spatially varying conductivity is governed by Laplace equation, which is transformed into a Poisson-type expression with an inhomogeneous term involving the conductivity difference as a source term. Dual reciprocity method (DRM) is a technique for transforming the domain integral associated with the inhomogeneous term in Poisson equation into the boundary integral expression. The resistivity distribution in the field can thus be identified from the data observed over its boundary, for which some examples are demonstrated [2]. In this paper, the examination is extended to the case where only the data measured over the single surface is used for the inversion

    Avaliação de acessos de alfafa na região sudeste do Brasil.

    Get PDF
    O trabalho foi desenvolvido em São Carlos, SP, região Central do Estado de São Paulo. Foram avaliados 92 acessos de alfafa quanto a produção de forragem, por meio de um delineamento experimental de blocos ao acaso, com duas repetições. Em 14 cortes de produção, ocorreram diferenças significativas para a produção de matéria seca, com destaque para LEN 4, P30, Crioula, Barbara SP INTA e P5715, com produção média acima de 1800 Kg de matéria seca/ha/corte

    Vector solitons in (2+1) dimensions

    Full text link
    We address the problem of existence and stability of vector spatial solitons formed by two incoherently interacting optical beams in bulk Kerr and saturable media. We identify families of (2+1)-dimensional two-mode self-trapped beams, with and without a topological charge, and describe their properties analytically and numerically.Comment: 3 pages, 5 figures, submitted to Opt. Let

    Three-Wave Modulational Stability and Dark Solitons in a Quadratic Nonlinear Waveguide with Grating

    Full text link
    We consider continuous-wave (CW) states and dark solitons (DSs) in a system of two fundamental-frequency (FF) and one second-harmonic (SH) waves in a planar waveguide with the quadratic nonlinearity, the FF components being linearly coupled by resonant reflections on the Bragg grating. We demonstrate that, in contrast with the usual situation in quadratic spatial-domain models, CW states with the phase shift between the FF and SH components are modulationally stable in a broad parameter region in this system, provided that the CW wavenumber does not belong to the system's spectral gap. Stationary fundamental DSs are found numerically, and are also constructed by means of a specially devised analytical approximation. Bound states of two and three DSs are found too. The fundamental DSs and two-solitons bound states are stable in all the cases when the CW background is stable, which is shown by dint of calculation of the corresponding eigenvalues, and verified in direct simulations. Tilted DSs are found too. They attain a maximum contrast at a finite value of the tilt, that does not depend on the phase mismatch. At a maximum value of the tilt, which grows with the mismatch, the DS merges into the CW background. Interactions between the tilted solitons are shown to be completely elastic.Comment: 10 pages, 12 figures; Journal of Optics A, in pres

    Approximate solutions and scaling transformations for quadratic solitons

    Full text link
    We study quadratic solitons supported by two- and three-wave parametric interactions in chi-2 nonlinear media. Both planar and two-dimensional cases are considered. We obtain very accurate, 'almost exact', explicit analytical solutions, matching the actual bright soliton profiles, with the help of a specially-developed approach, based on analysis of the scaling properties. Additionally, we use these approximations to describe the linear tails of solitary waves which are related to the properties of the soliton bound states.Comment: 11 pages, 9 figures; submitted for publicatio

    Angular Dependences of Third Harmonic Generation from Microdroplets

    Full text link
    We present experimental and theoretical results for the angular dependence of third harmonic generation (THG) of water droplets in the micrometer range (size parameter 62<ka<24862<ka<248). The THG signal in pp- and ss-polarization obtained with ultrashort laser pulses is compared with a recently developed nonlinear extension of classical Mie theory including multipoles of order l250l\leq250. Both theory and experiment yield over a wide range of size parameters remarkably stable intensity maxima close to the forward and backward direction at ``magic angles''. In contrast to linear Mie scattering, both are of comparable intensity.Comment: 4 pages, RevTeX, 3 figures available on request from [email protected], submitted to PR

    Spatiotemporally localized solitons in resonantly absorbing Bragg reflectors

    Full text link
    We predict the existence of spatiotemporal solitons (``light bullets'') in two-dimensional self-induced transparency media embedded in a Bragg grating. The "bullets" are found in an approximate analytical form, their stability being confirmed by direct simulations. These findings suggest new possibilities for signal transmission control and self-trapping of light.Comment: RevTex, 3 pages, 2 figures, to be published in PR
    corecore