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Resistivity distribution sounding of the non-homogeneous earth is important for electrical ground system design,
geophysical prospecting and survey or monitoring the groundwater flow level. The previous paper presented that the
direct inversion of the electric resistivity distribution in a domain is possible from the impedance data measured over
the domain boundary using the dual reciprocity boundary element modelling in two-dimentional field [1]. The
proposed inversion technique is extended to the distribution in three-dimensional space [2]. This technique is capable
of inversion without iteration and meshing of the domain. Electric field with spatially varying conductivity is
govemed by Laplace equation, which is transformed into a Poisson-type expression with an inhomogeneous term
involving the conductivity difference as a source term. Dual reciprocity method (DRM) is a technique for
transforming the domain integral associated with the inhomogeneous term in Poisson equation into the boundary
integral expression. The resistivity distribution in the field can thus be identified from the data observed over its

boundary, for which some examples are demonstrated [2]. In this paper, the examination is extended to the case

where only the data measured over the single surface is used for the inversion.

1. Introduction

The BEM is, FEM as well, a powerful tool for numerical
engineering analysis. The main attraction of the BEM is
that it only requires the surface division of the field under
study, while FEM needs the discretization of the whole
field into a series of block-like elements. In addition, the

field variables under consideration are found

simultaneously.
The finding of the resistivity distribution in the

non-homogeneous field is an inverse problem in which the
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resistance distribution is reconstructed from the potential
data measured over the field boundary. This kind of
problem has attracted many investigators. For instance,
Kohn and Vogelius discussed the mathematical foundation
of the uniqueness of the impedance distribution
determination from the boundary data [3], [4]. Barber and
Brown developed a back-projection method through
interative process based on the linearization around a
constant conductivity [5]. Murai and Kagawa first

proposed the use of the finite element model in which a

perturbation approach is employed for the solution
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incorporating with the regularization based on Akaike's
information criterion to overcome the ill-conditioned nature
of the problem [6]. Murai and Kagawa have also proposed
boundary element iterative techniques for determining the
interface boundary between Laplace and Poisson domains
[7].

Many of the approaches of the inversion are based on the
minimization of the cost function, or the norm of the
boundary values between the calculated and the measured
with respect to the conductivity distribution assumed,
which requires repeated calculations until the convergence

1s reached.
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The boundary element method has successfully been
used for various problems of homogeneous fields.
However, for the non-homogeneous field it is difficult or
almost impossible to obtain the fundamental solution, and
hence in most cases the fundamental solution of the
homogeneous problem should be used for the integral
equation formulation. In this case, a domain integral arises
in the boundary integral equation. For its solution, there are
some possibilities [8]; Iterative solution of the boundary
integral equation and the application of the dual reciprocity

method (DRM) [9], [10].
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Fig.2. Methods of the data collection, after the ref.[11]
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In the previous paper [1], a new approach was presented
to identify the conductivity distribution without iterative
process by using DRM boundary element models for
two-dimensional field. The domain integral is evaluated in
a meshless manner based on the dual reciprocity method, in
which the domain integral is transformed into boundary
integrals with simple radial basis functions and particular
solutions. The approach was then extended into the
three-dimensional case [2]. In the present paper, the data
measured only over the single surface of the ground is used

to examine the possible inversion.

2. AModel and Data Acquisition

Figure 1 shows a data acquisition system model for
electrical ground resistivity distribution prospecting. The
data acquisition is to collect the impedance data between
the electrodes placed on the region boundary of interest.

There are several methods of the electrode arrangement
to obtain the data. One is called the opposite method in
which the electric current is diagonally applied to the region
in turn to which the potential data are collected at all of the
electrodes which is illustrated in Fig.2 (a). The current is
injected through two diametrically opposed electrodes. The
voltage reference electrode is chosen adjacent to the current
driving electrode. For a particular pair of driving electrodes
(1-8), the voltages are measured at all the electrodes, except
the driving electrodes. To obtain the next set of data, the
current is switched to the next pair of opposite electrodes

(2-9). Though voltage reference was also changed
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accordingly, and the voltages are similarly measured with
respect to the new reference, and the voltages measured for
each pair of current electrodes with respect to the reference
elecrode. Another method called neighboring method is
shown in Fig.2 (b). For the 16 electrodes arrangement, the
opposite method has more uniform current density and

hence possibly good sensitivity is expected [11].

Boundary nodes
(total number M)

Intemnal nodes
(total number L)

Fig.4. Boundary and nodes

Figure 3 shows the case more realistic situations. Figure
3 (a) is the case when the electrodes are partly placed in the
bore holes and partly placed on the ground surface for
which the opposite method is used, and Fig.3 (b) is the case
when the electrodes are arrayed only on the ground surface,
for which the neighboring method is possible. The
two-dimensional modelling is not always reasonable as the
electric currents are diffusive and may not stay in the
cross-sectional  plane, so that the two-dimensional

modelling 1s not acceptable except for the field of special

49
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configuration. For this case, three-dimensional modelling
was attempted [2]. The present paper focuses on the case of

Fig3 (b) to which the neighboring method is suitable.

3. Dual Reciprocity Boundary Integral

Expression

Poisson equation in three dimensions is written as

V24(x,y,2) = b(x,y,2), (1)

where @(x,y,z) , and b(x,y,z) are the electric
potential and charge density defined in the bounded field,

and g2 _ 0° 8 8" istheLaplace operator.

Tt oy? e
The potential ¢(x,y,z) that satisfies equation (1) can
be expressed as the sum of the particular solution
{(x,y,z) of the inhomogeneous equation and the
fundamental solution y/(x,y,z) of the homogeneous

equation, so that one has

B(x,y,2)=y(x,y,2) +{(x,y,2) @)

The boundary is divided into elements
r(j=12,...M). M boundary nodes and L intermnal

nodes are also shown in Fig4. The potential ¢, at an
arbitrary point i in the field can be expressed as the linear
combination of the contribution from the sources taken at
the nodes on the boundary and at the interior nodes.

The fundamental solution for the arbitrary point i in

the field can be expressed as the linear combination of the
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fundamental solutions with respect to j
S T
v, =y(x,y,2)= Z%ﬂj = {'// },. {ﬂ} 3
=l

where the fundamental solution of Laplace equation

Viy(x,y,z)=0 isgivenby

)

v

; is the distance from a source point i to the

consideration point ; , and B, is the unknown
cocfficient.
In the similar manner, the particular solution can be

expressed as the linear combination of the particular

solutions with respect to /

M+l

gizg(xi’yi’zi):Zgi;alz{;‘}:.{a}’ ®)

where £ is given by

©)

and r,  is the maximal length. Then the potential ¢, at

max

an arbitrary point £ in the field can thus be expressed as

4= 9(x,, 5,2,
™

=ﬁwm+;gm=@Yw%kaL
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where
L) ={wiwnewn b
(o) =g Gnlinnl
By =18 B, B}

o=, a0, )

v, is the fundamental solution whose value is evaluated at
I for a unit source given at point j on the boundary, and
p, 1s the unknown coefficients associated with boundary
element ; which cormresponds to the fictitious charges.
¢, is the particular solution whose value is evaluated at i
for a unit source given atnode / and ¢ , is the unknown
coefficients associated with node / which also
corresponded to the fictitious charges [12].

It is difficult to find a solution of the above using usual
boundary element formulation as it involves the domain
integration. In order to avoid the domain integral in the
formulation of the boundary integral equation, we use the
dual reciprocity method (DRM).

With DRM the following approximate expression for

b, inequation (1) is expanded in such away that

M+L

b, =b(x;,y,,z,) = Za/ il ®
=1
where a, ae unknown coefficients and £, is

approximating functions chosen to express the presence of

the source b, . If there are M boundary nodes and L

intemal nodes, there will be M + L values for the

particular solutions ¢, which is the solution of
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Vi =/, ©

For the fundamental solution, V2w (x,y,z)=0
can be discretized into boundary integral expression as

follows [9]:

ik v }—[c%a—‘”—}o a0

on

In the process of obtaining boundary element formulation

(10), the coefficients {3} are eliminated.

Based on the equation (10) and with the equation (2), the
following discretized expression for the Poisson equation

results:

3= Tk Xe} - €)-lo) {22} {%] ]
161 (10} S )- 161 {2 - 5% |

i=1

that is
[kJo}-[61{92} - (x I )- o To D}

(1)
where [k 1= [E(G 'Y [U'] and [£] s the

components

14 .oyl L$h e OV
Ei/ =5; Irl"WIMWdrm+5mZ:| Ir,,,w’m a’; dr’"

(12)
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The components of other matrices are

. . o .
Gy:.[rjv’vdr/’ Hy =g, Qu=a—n'=q,-[

(=12, M +L), (i,j=12,.,M)

For constant boundary elements, U, =(the length of the
element j)(i= j)and Ug,zo(l.;tj).
Referring to the equation (9), the non-homogeneous

term b can be expressed as

M+l

b =b(x,,y,,2) = 2@, (V) (13)
j=1

Equation (13) can be substituted into the equation (1) to

give the following expression

M+L

Vg, = ;a,(vz;). (14)
The {@} inequation (8)is given in matrix form
(o} =[FHa} (1s)
which is inverted to obtain
fa}=[F]" o). 16
where {p}={p,,b,.,...,b,,.,} and each component of

[F] consists of the function £ evaluated at /(M +L).

Equation (16) is substituted into equation (11) resulting in
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and

[s]=[x1#]-[cTe]

The accuracy of the solution in dual reciprocity method

depends on the choices of the approximating functions f,

and the number and positions of the nodes taken, The

function recommended is
fi , = 1+ ¥y (18)

which is the function truncated by the second term for the

polynomial
fi=l+r +rt 4 40y (19)

In principle, any combination of the terms may be selected,
but the equation (18) is said to be of the simplest but
acceptable choice [9)].

In this study, we choose the approximating function £,

tobe
f” = (20)

where

ra=NX +Y?+ 27,

X=x-x, Y=y,-y,Z=z-2,.

I

¥, is the distance between node i and / , and Vo 18

the maximum distance.



March 2003

4. Inverse Solution Procedures

The potential @(x,y,z) in the non-homogeneous

elecnc field is governed by the equation
V-(6Ve(x,p,2))=0 @n

where O is the isotropic resisitivity which depends on
the position. When the field is homogeneous, equation (21)

becomes Laplace equation
Vé(x,y,2)=0 (22)

The equation (21) can be expanded as follows:

V2¢(x,y,z)+lV0'~V¢(x,y,z)=O- (23)
o

The second term is taken as the forcing term, to give

Vih(x,y,2)=VP(x,y,2)- VR=b(x,y,z)  (24)

where R=~Ino.

This altemative expression is to be solved for equation
(21), which is the same as the expression (1). The potential
distribution in the field can be solved for the boundary
condition and the resisitivity distribution prescribed. In the
present inverse problem, the resisitivity distribution is to be
determined from the measured potential data observed over
the boundary.

As equation (24) is a kind of Poisson equation due to the
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presence of the right hand side term, the DRM boundary
element method leads it to the expression (17), which is
solved for the boundary conditions or the measured data to
find {b} . The voltages between different pairs of
electrodes are measured on &1e ground surface for the
current injected. The lefi-hand side of equation (24) is now
nothing but the forcing term, which is the resisitivity
distribution to be identified.

From equation (24), one has the equation with {b}

known

oR v ORO8 ORO8 ORO4 . s
"7 0x 0x Oy dy 0z 0z

Forthe k" current injection we can obtain

OR, 04/ L OR o¢' OR o _

bt (26)
Ox Ox

oy 0y &z 0z '

The process of the direct inversion will be given as
follows. First, several electrodes are placed on the boundary.
A pair of them are chosen as the driving current terminals
and the potentials between adjacent electrode pairs are
measured to provide the electric potential distribution on

the boundary. In the present simulation, the forward

solution {g } for the given conductivity distribution is
used as the measured values. {g} in equation (3) is

obtained for the solution of the homogeneous field: The

potential {¢} of the Laplace problem is given on the

boundary, that is
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Then the difference of the measured potential {g,}to
the potential as a solution of the Laplace problem provides
the information of the conductivity change within the field.
Equation (7) is solved for {a} with respect to this

difference as

l}= ({ 4‘}f)]({¢o}— {3) (28)

Finally, ¢, and b, are evaluated at any point i by
equation (15) and equation (7). The potential gradient
0¢,/0x, O¢. [0y and g, [0z are readily evaluated in
the region.

Solving the equation (26) for dR,/0x, OR, /0y and
3R, [z , the logarithm resistivity coefficient R, at point
i are obtained by integrating for a pixel along x, y and z
directions. Since there are three unknowns, solution is
theoretically obtained for three current injections. The
system equation is not symmetric but can generally be

solved by the method of least squares.

Resisitivity o, is evaluated at the point ¢ by
o, =exp(—R,) (29)
5. Demonstration Models

The validity of the algorithm has been verified [2]. The

present paper considers two models. One corresponds to
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the case A given in Fig.3 (a) and another is the case B given
in Fig.3 (b). The details of the arrangement are shown in
Fig.5 with the electrodes locations.

The boundary surface was divided into 1200 triangular
elements. The size of the field is considered 10m® and the

relative conductivity of the field taken tobe o, =1.

The boundary condition is assumed to be 9¢/0n =0
except for the elements chosen as driving electrodes. A pair
is chosen to be the driving electrodes to which a unit
current is injected. The potential distribution is measured on
all of the electrodes. 40 times of injection is made for the

first case (case A) and 28 times for the last case (case B).

6. Numerical Results

6.1 The case A

Figure 6 shows the result inverted for the case when
there is a cube (2m°, o, =1.1) placed near one of the
comers under the ground surface. (a) is the potential change
distribution and (b) is the relative conductivity distribution

inverted. Figure 7 is the result for the case when there is a

cube (2m*, o, =1.1) placed in the middie of the field.

6.2 The case B
Figure 8 shows the result for the case when there is a

cube (2m°, o, =1.1) placed near one of the comers

under the surface. Figure 9 shows the result for the case

when there is a cube (2m°, o, =1.1) placed in the
middle of the field.

The numerical experiment shows that it is possible to
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Fig.6. The case where a non-homogeneous cubic region is placed
in one of the corners ( with the relative conductivity o, =1.1)
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search the position where the conductivity is higher than
the surrounding medium, but it is difficult to determine the
exact discontinuous boundaries, so that the stepped change
of the conductivity is difficult to be discriminated. The
value of the conductivity in the cubes is under-estimated
and its value is pushed toward the conductivity of the
surrounding medium. As expected, the inversion accuracy

is better for the case A than the case B.

7. Concluding Remarks

Following the electric impedance imaging technique
examined in the previous papers [1] [2], in the present
paper, examination was extended to the case where the data
is accessible only to the ground surface. The simulation
showed that the technique was also applicable to this case.
The question is to improve the resolution and accuracy
under notsy condition. At the present simulation, noise-free.
data were used. The inverted solution could at least be a
good estimate for the initial data in the optimization type
repetition algorithm frequently used. Examples show that
the method proposed is successful in identifying
conductive objects. The presence of the non-homogeneous
regions and their positions are reasonably recognized

though their boundaries are blurred.
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