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Resistivity distribution sotmding of the non-homogeneous earth is important for electrical ground system design,

geophysical prospecting and swvey or monitoring the grotmdwater flow level. The previous paper presented that the

direct inversion ofthe electric resistivity distribution in a domain is possible from the impedance data measured over

the domain botmdary using the dual reciprocity botmdary element modelling in two-dimentional field [I]. The

proposed inversion technique is extended to the distribution in three-dimensional space [2]. This technique is capable

of inversion without iteration and meshing of the domain. Electric field with spatially varying conductivity is

governed by Laplace equation, which is transfonned into a Poisson-type expression with an inhomogeneous tenn

involving the conductivity difference as a sotm:e tenn. Dual reciprocity method (DRM) is a technique for

transfonning the domain integral associated with the inhomogeneous tenn in Poisson equation into the botmdary

integral expression. The resistivity distribution in the field can thus be identified from the data observed over its

botmdary, for which some examples are demonstrated [2]. In this paper, the examination is extended to the case

where only the data measured over the single surface is used for the inversion.

1. Introduction

The BEM is, FEM as well, a powerful tool for nwnerical

engineering analysis. The main attraction of the BEM is

that it only requires the surface division of the field under

study, while FEM needs the discretization of the whole

field into a series of block-like elements. In addition, the

field variables under consideration are found

simultaneously.

The fmding of the resistivity distribution in the

non-homogeneous field is an inverse problem in which the
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resistance distribution is reconstructed from the potential

data measured over the field boundaIy. This kind of

problem has attracted many investigators. For instance,

Kohn and Vogelius discussed the mathematical foundation

of the uniqueness of the impedance distribution

determination from the boundaIy data [3], [4]. Barber and

Brown developed a back-projection method through

interative process based on the linearization around a

constant conductivity [5]. Murai and Kagawa frrst

proposed the use of the fmite element model in which a

perturbation approach is employed for the solution
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incorporating with the regularization based on Akaike's

information cliterion to overcome the ill-conditioned nature

of the problem [6]. Murai and Kagawa have also proposed

boundary element iterative techniques for detennining the

interlace boundary between Laplace and Poisson domains

[7].

Many of the approaches of the inversion are based on the

minimizatiun of the cost function, or the nonn of the

boundary values between the calculated and the measured

with respect to the conductivity distribution assumed.,

which requires repeated calculations until the con ergence

is reach(~.

Current clectrod
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The boundary element method has successfully been

used tor various problems of homogeneous fields.

However, for the non-homogeneous field it is difficult or

almost impossible to obtain the ftmdamental solution, and

hence in most cases the fundamental solution of the

homogeneous problem should be ed for Lie integral

equation formulation. In this case, a domain iJ1tegral arises

in the boundary integral equation. For its solution, there are

some possibilities [8]; Iterative solution of the botrndary

integral equation and the application of the dual reciprocity

method (DRM) [9], [10].

on - hom gen us regions
,,

Fig.l. Modelling of the data acquisition system of

the three-dimensional electrical prospecting
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(a). Opposit method

9

(b). Neighboring method

Current line

Fig.2. Methods of the data collection, after the ref.[ 11]
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Volt meter

Ground Surface

Current
Source

Bore holes

(a). The case where the electrodes are placed both on the bore holes and the surface.

Ground Surface

Electrode

Volt meter

urrent
Source

(b), Th case where the data is collected only from the
electrodes arrayed on the ground surface

Fig.3. Field and ele trade arrangement
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In th previous paper [1], a new approach was presented

to identifY the conductivity distribution without iterative

process by using DRM boundary element models for

two-dimensional field. The domain integral is evaluat d in

a meshless marmer based on the dual reciprocity method, in

whi h the domain integral is transformed into boundary

integrals with simple radial basis functions and particular

solutions. The approach was then extended into the

three-dimensional case [2]. In the present paper, the data

measured only over th single surfac of the ground is used

accordingly, and the voltages are similarly measured with

respect to the new reference, and the voltages measured for

each pair of current electrodes with respect to the reference

electrode. Another method caned neighboring method is

shown in Fig.2 (b). For the 16 electrodes arrangement, the

opposite method has more uniform current density and

hence possibly good sensitivity is expected [11].

Boundary nodes
(total number M)

to exarnm.e the possible inversion.

2. A Model and Data Acquisition

Figure 1 shows a data acquisition system model for

electrical ground resistivity distribution prospecting. The

data acquisition is to collect the impedance data between

the electrodes placed on the region boundary of interest.

r

There are several methods of the electrode arrangeml~nt

to obtain the data. One is called the opposite method in

which the electric current is diagonally applied to the region

in tum to which the potential data are collected at all of the

electrodes which is illustrated in Fig.2 (a). Th current is

inje ted through two diametrically opposed electrodes. The

voltage reference electrode is chosen adjacent to the current

driving ele trode. For a particular pair of driving electrodes

(1-8), the voltages are measured at all the electrodes, except

the driving electrodes. To obtain the next set of data, the

current is switched to the next pair of opposite electrodes

(2-9). Though voltage reference was also changed

FigA. Boundary and nodes

Figure 3 shows the case more realistic situations. Figure

3 (a) is th case when the electrodes are partly placed in the

bo holes and partly placed on the ground swface for

which the opposite method is used, and FigJ (b) is the case

when the electrodes are arrayed only on the ground surface,

tor which the neighboring method is possible. The

t\vo-dirnensional modelling is not always reasonable as the

electric currents are diffusive ::md may not stay in the

cross-sectional plane, so that the two-dimensional

modelling is not acceptable except for the field of special
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configuration. For this case, three-dimensional modelling

was attempted [2]. The present paper focuses on the case of

Fig3 (b) to which the neighboring method is suitable.

3o Dual Reciprocity Boundary Integral

Expression

Poisson equation in three dimensions is written as

MEM. FAC. ENG. OKAYAMA UNIV. Vo1.37, No.2

fundamental solutions with respect to j

M

ljIi =1jI(Xp yj,Zj) = LIjI;Pj = {ljIor{p}, (3)
j=1

where the fundamental solution of Laplace equation

V 21j1(x,y,z) =0 is given by

V 2¢(X,y,Z) = b(x,y,z) , (1)

(4)

where ¢(x,y,z) , and b(x,y,z) are the electric

potential and charge density defmed in the bounded field,

and V 2 =~ +~ +~ is the Laplace operator.
Jx 2 Jy 2 JZ 2

The potential ¢(x,y,z) that satisfies equation (1) can

be expressed as the sum of the particular solution

rij is the distance from a source point i to the

consideration point j , and P
j

is the unknown

coefficient.

In the similar manner, the particular solution can be

expressed as the linear combination of the particular

solutions with respect to I

s(x, y, z) of the inhomogeneous equation and the

:fi.mdamental solution ljI(x,y,z) of the homogeneous

equation, so that one has

¢(x,y, z) = ljI(x,y, z) +Sex, y,z) (2)

The boundaIy IS divided into elements

ri(J = 1,2, .... ,M). M boundaIy nodes and L internal

M+L

(=S(X"Yi,ZJ= LSi;ai={Cy{a},
1=1

where t;;; is given by

3
/o_~~
'='iI - ,

12 rmax

(5)

(6)

nodes are also shown in FigA. The potential ¢i at an

arbitrary point i in the field can be expressed as the linear

combination of the contribution from the sources taken at

the nodes on the boundaIy and at the interio~ nodes.

The fundamental solution for the arbitrary point i in

the field can be expressed as the linear combination of the

and r;nax is the maximal length. Then the potential ¢, at

an arbitrary point i in the field can thus be expressed as

¢i =¢(Xi,ypZi)
M N+L (7)

= L ljI;fJj + L (;a, = {1jI0r{p} + kor{a},
j=1 1=1
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where

{ .} { .. . }.If/ i = If/ii' If/i2 , ... , If/iM '

{s'} ={ r;;~'Si'2""'Si~M+L)};

{p} = {Pi' ,02 ,... ,PM };

{a}= {a"a2 , ... ,aM+L },

(9)

For the fundamental solution, V' 2lf/ (x, Y, z) =0

can be discretized into boundary integral expression as

follows [9]:

If/ ~. is the fundamental solution whose value is evaluated at
1/

i for a unit source given at point j on the boundary, and

,OJ is the unknown coefficients associated with boundary

element j which corresponds to the fictitious charges.

Si~ is the particular solution whose value is evaluated at i

for a unit source given at node I and a, is the unknown

coefficients associated with node I which also

corresponded to the fictitious charges [12].

It is difficult to find a solution of the above using usual

boundary element formulation as it involves the domain

integration. In order to avoid the domain integral in the

formulation of the boundary integral equation, we use the

dual reciprocity method (DRM).

With DRM the following approximate expression for

b
i

in equation (1) is expanded in such away that

(10)

In the process of obtaining boundary element formulation

(10), the coefficients {p} are eliminated.

Based on the equation (10) and with the equation (2), the

following discretized expression for the Poisson equation

results:

that is

M+L

bi = b(XpYi'Z;) ~ IaJiI
/=\

(8)

[K ]{¢ }- [G ] {~~ } = ([K IH ] - [G IQ D{a } ,

(II)

where [K] = [E ]UG JI Y[u] and [E] has the

where a I are unknown coefficients and fil is

approximating functions chosen to express the presence of

the source b
i

• If there are M boundary nodes and L

internal nodes, there will be M + L values for the

particular solutions r;;;, which is the solution of

components

M • M a .
E -!" f . aIf/im dr +!" f . 'II jm dr

ij - 2~ f", 'II im an m 2~ f", '11,
m an m

(12)
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The components ofother matrices are

(l = 1,2,...,M +L), (t,) = 1,2,... ,M)

and

[K ]{¢}- [G~ ~~} =[sIFII {b} (17)

For constant boundary elements, U = (the length of the
!I

element j Hi = j) and UiJ =0 (i * j).

Referring to the equation (9), the non-homogeneous

term b can be expressed as

The accuracy of the solution in dual reciprocity method

depends on the choices of the approximating fimctions Iii

and the number and positions of the nodes taken. The

fimction recommended is

(13) liJ =l+ri/ (18)

Equation (13) can be substituted into the equation (1) to

give the following expression

which is the fimction tnmcated by the second term for the

polynomial

(14)
(19)

The {a} in equation (8) is given in matrix form

In principle, any combination ofthe terms may be selected,

but the equation (18) is said to be of the simplest but

(15)

acceptable choice [9].

In this study, we choose the approximating fimction Iii

to be

which is inverted to obtain (20)

(16)

where {b} = {bl , b2,...,bM+J and each component of

[F] consists of the fimction Iii evaluated at I ( M + L ).

Equation (16) is substituted into equation (II ) resulting in

where

ri/ =.JX 2 + y2 + Z2 ,

X = Xi - XI' Y = Y i - YI' Z = Zi - ZI'

riJ is the distance between node and I , and rmax is

the maximum distance.
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4. Inverse Solution Procedures

The potential ¢(x,y,z) in the non-homogeneous

electric field is governed by the equation

presence of the right hand side term, the DRM boundary

element method leads it to the expression (17), which is

solved for the boundary conditions or the measured data to

fmd {b}. The voltages between different pairs of

V· (dV' ¢(X,y,Z» =0 (21)

electrodes are measured on the ground surface for the

current injected. The left-hand side ofequation (24) is now

nothing but the forcing term, which is the resisitivity

where a is the isotropic resisitivity which depends on

the position. When the field is homogeneous, equation (21)

becomes Laplace equation

distribution to be identified.

From equation (24), one has the equation with {b}

known

The equation (21) can be expanded as follows:

(22)

For the k til current injection we can obtain

1
V 2¢(x,y,z) +-'1 (J" V¢(x,y,z) =O·

(J'

The second tenn is taken as the forcing term, to give

(23)

8Rj 8¢/ + 8Rj 8¢/ + 8R, 8¢/ =bk •

8x 8x 8y 8y 8z 8z '
(26)

V 2¢(x,y,Z) = V¢(x,y,z)· VR = b(x,y,z) (24)
The process of the direct inversion will be given as

follows. First, several electrodes are placed on the boundary.

where R=-lna.

This alternative expression is to be solved for equation

(21), which is the same as the expression (l). The potential

distribution in the field can be solved for the boundaIy

condition and the resisitivity distribution prescribed. In the

present inverse problem, the resisitivity distribution is to be

determined from the measured potential data obselVed over

the boundary.

As equation (24) is a kind ofPoisson equation due to the

A pair of them are chosen as the driving current terminals

and the potentials between adjacent electrode pairs are

measured to provide the electric potential distribution on

the boundaIy. In the present sinmlation, the forward

solution {¢o} for the given conductivity distribution is

used as the measured values. {p} in equation (3) is

obtained for the solution of the homogeneous field: The

potential {¢} of the Laplace problem is given on the

boundary, that is
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(a). Model for the case A
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Boundary elements: 1200

Internal calculated points: 17576
~

10m

o

(b). Model for the case B

Fig.5. Three-dimensional models
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Then the difference of the measured potential {¢o} to

the potential as a solution of the Laplace problem provides

the information of the conductivity change within the field.

Equation (7) is solved for {a} with respect to this

difference as

Finally, ¢i and h; are evaluated at any point i by

equation (15) and equation (7). The potential gradient

o¢)ax, o¢joy and o¢)az are readily evaluated in

the region.

Solving the equation (26) for eR; /0x, 0R; /0y and

oR; /ez , the logarithm resistivity coefficient R
j

at point

i are obtained by integrating for a pixel along x, y and z

directions. Since there are three unknowns, solution is

theoretically obtained for three current injections. The

system equation is not symmetric but can generally be

solved by the method ofleast squares.

Resisitivity (jj is evaluated at the point by

(29)

5. Demonstration Models

The validity of the algorithm has been verified [2]. The

present paper considers two models. One corresponds to

the case A given in Fig.3 (a) and another is the case B given

in Fig.3 (b). The details of the arrangement are shown in

Fig.5 with the electrodes locations.

The boundary surface was divided into 1200 triangular

elements. The size ofthe field is considered 10m 3 and the

relative conductivity ofthe field taken to be (j0 = 1.

The boundary condition is assumed to be aiP/an = 0

except for the elements chosen as driving electrodes. A pair

is chosen to be the driving electrodes to which a unit

current is injected. The potential distribution is measured on

all of the electrodes. 40 times of injection is made for the

first case (case A) and 28 times for the last case (case B).

6. Numerical Results

6.1 ThecaseA

Figure 6 shows the result inverted for the case when

there is a cube (2m 3
, (j, =1.1) placed near one of the

comers under the ground surface. (a) is the potential change

distribution and (b) is the relative conductivity distribution

inverted. Figure 7 is the result for the case when there is a

cube (2m 3
, (jj =1.1 ) placed in the middle ofthe field.

6.2 The case B

Figure 8 shows the result for the case when there is a

cube (2m 3
, (ji =1.1 ) placed near one of the comers

under the surface. Figure 9 shows the result for the case

when there is a cube (2m 3
, (jj = 1.1) placed in the

middle of the field.

The numerical experiment shows that it is possible to
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(a). The distribution of potential change (in the planes y=5.0, x=7.0)

Relative value

(b). The relative conductivity distribution in erted (in the planes y=5.0, x=5.0)

Fig.6. The case where a non-homogeneous cubic region is placed
in one of the corners ( with the relative conductivity 0', =1.1 )
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(a). The distribution of potential change (in the planes y=3.0, x=7.0)

Relative value

(b). The r lative conductivity distributi n inverted (in the planes y=3.0, x=7.0)

Fig.7. The ase where a non-homogeneous cubic region is placed
in th middle ( with the relative conductivity (J, = I 1 )
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(a). The distribution of potential change (in the planes y=5.0, x=5.0)

z

Kelativc value

(b). The relative resisitivity distribution invert~d (in the planes y=5.0, x=5.0)

Fig.9. The case where a non-homogeneous cubic region is placed

in the middle ( with th relative onductivity 0 I = 1.1 )
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search the position where the conductivity is higher than

the surrounding medium, but it is difficult to determine the

exact discontinuous boundaries, so that the stepped change

of the conductivity is difficult to be discriminated The

value of the conductivity in the cubes is under-estimated

and its value is pushed toward the conductivity of the

surrounding medium. As expected, the inversion accuracy

is better for the case A than the case B.

7. Concluding Remarks

Following the electric impedance imaging technique

examined in the previous papers [1] [2], in the present

paper, examination was extended to the case where the data

is accessible only to the ground surface. The simulation

showed that the technique was also applicable to this case.

The question is to improve the resolution and accuracy

under noisy condition. At the present simulation, noise-free.

data were used. The inverted solution could at least be a

good estimate for the initial data in the optimization type

repetition algorithm frequently used. Examples show that

the method proposed is successful in identifying

conductive objects. The presence of the non-homogeneous

regions and their positions are reasonably recognized

though their boundaries are blurred.

Reference

[I] Y. Kagawa, Y. Sun and Y. Zhao. "Direct inversion algorithm for

electrical impedance tomography using dual reciprocity boundary

element models". Inverse Problems in Engineering, vol.5,

MEM. FAC. ENG. OKAYAMA UNIV. Vo1.37, No.2

pp.217-237, (1997).

[2] T. Horikane, T. Hataya, W. Xu, Y. Zhao and Y. Kagawa. "3D

electrical impedance prospecting simulation based on the dual

reciprocity boundary element modelling". Inverse problem in

Engineering Mechanics m, M Tanaka, G S. Dulikravich, Eds.,

Elsevier &ience, ppAII-418, (2002).

[3] R. V Kohn and M. Vogelius. "Detenning conductivity by

boundary measurements", Communication ofPure and Applied

Mathematics, (1984).

[4] R. V Kohn. "Identification of an unknown conductivity by

means ofmeasurements at the boundary" American Mathematical

Soc, SlAM-AMS Proc, 14, (1984).

[5] D. C. Barber and B. H. Brown. "Applied potential

tomography",J Phys. E: &i.Instrnm., voU7, (1984).

[6] T. Murai and Y. Kagawa. "Electrical impedance computed

tomography based on a finite element model", IEEE Trans.

Biomedical Engineering, BME-32, 3 March, (1985).

[7] T. Murai, and Y. Kagawa. "Boundary element iterative

techniques for detennining the interface bo~dary between two

Laplace domains - a basic study ofimpedance plethysmography as

an inverse problem", Int. J Numer. Methods Eng., 23(1), pp,35-47,

(1986).

[8] C. A. Brebbia, 1. C. Tells and L. C. WOIbel. "Boundary element

techniques", Springer-Verlag, (1984).

[9] P. W. Partridge, C. A. Brebbia and L. C. Wrobel. "The dual

reciprocty boundary element method", Computational Mechanics

Publication, (1992).

[10] C. S. Chen, C. A. Brebbia and H. Power. "Dual reciprocity

method using compactly supported radial basis functions",

Commlln. Nlimer. Meth. Engng., 15, pp, 137-150, (1999).

[II] 1. G. Webster (ed.). "Electrical impedance tomography",

Adam Hilger, Bristol and NewYork, pp.75-87, (1990).

[12] S. Murasima. "Charge simulation method and its

applications". Morikita Press, Tokyo, in Japanese, (1983).




