19 research outputs found

    Development of Co-solvent Freeze-Drying Method for the Encapsulation of Waterinsoluble Thiostrepton in Sterically Stabilized Micelles

    No full text
    The purpose of this work was to develop a practical and scalable method to encapsulate the hydrophobic antibiotic thiostrepton (TST) in sterically stabilized micelles (SSM). Using the conventional method of thin-film hydration, we encapsulated up to 5 drug molecules per SSM (diameter ~16nm). However, since this method is not suitable for large-scale production – a limiting factor for clinical translation – we applied the co-solvent freeze drying method using tertbutanol (TBA): water co-solvent system. We found that the presence of phosphate buffered saline (PBS) salts in the lyophilized cake accelerated the reconstitution time and allowed efficient drug encapsulation without the formation of larger drug particles. In addition, TBA proportion of 50% (v/v) was sufficient to maintain both phospholipid and drug in solution prior to the freeze-drying. The increase of drug and phospholipid concentrations in the formulation extended the reconstitution time and led to drug precipitation. Therefore, to increase the strength of the formulation, we prepared lyophilized cakes with lower phospholipid content (5mM) and reconstituted them in one-third of the fill volume. In conclusion, we found optimum conditions to prepare TST-SSM using the co-solvent freeze-drying method. This scalable the freeze-drying. The increase of drug and phospholipid concentrations in the formulation extended the reconstitution time and led to drug precipitation. Therefore, to increase the strength of the formulation, we prepared lyophilized cakes with lower phospholipid content (5mM) and reconstituted them in one-third of the fill volume. In conclusion, we found optimum conditions to prepare TST-SSM using the co-solvent freeze-drying method. This scalable production method can facilitate the further clinical development and industrial production of TST-SSM nanomedicine

    Cytotoxic, Apoptotic and Genotoxic Effects of Lipid-Based and Polymeric Nano Micelles, an In Vitro Evaluation

    No full text
    Self-assembly systems (SAS) mainly consist of micelles, and liposomes are the classes of Nano Drug Delivery Systems with superior properties compared to traditional therapeutics in targeting cancer tumors. All commercially available nano-formulations of chemotherapeutics currently consist of SAS. According to our knowledge, a specific toxicity comparison based on material differences has not yet been performed. The purpose of this study was to evaluate and compare the toxicity of two SAS consisting of Sterically Stabilized Micelles (SSM) made of a lipid-based amphiphilic distearoyl-sn-glycero-phosphatidylethanolamine-polyethylene glycol (PEG)-2000 and a polymeric micelle (PM) consisting of Y-shape amphiphilic block copolymer, synthesized using poly ε-caprolactone and PEG. The mechanism of cytotoxicity and genotoxicity of micelles on L-929 healthy mouse fibroblast cells was assessed using Sulforhodamine-B, WST-1, Acridine Orange/Ethidium Bromide and alkaline single-cell gel electrophoresis assays. Results showed that SSM in conc. of 40 mg/mL shows very low cytotoxicity at the end of 24, 48 and 72 h. The DNA damage caused by SSM was much lower than PM while the latter one showed significant toxicity by causing apoptosis with the ED50 value of 3 mg/mL. While the DNA damage caused by SSM was ignorable, some DNA chain breaks were detected on cells treated with PM

    Synthesis and Characterization of Biodegradable Amphiphilic Star and Y-Shaped Block Copolymers as Potential Carriers for Vinorelbine

    No full text
    Two amphiphilic block copolymers using hydrophobic poly(ε-caprolactone) (PCL) and hydrophilic poly(ethylene glycol) (PEG) were successfully synthesized. One of them is an (A-b-B)4 type star polymer [(PCL-b-PEG)4] and the other one is a Y-shaped PEG–(PCL)2. A star-shaped polymer (PCL-b-PEG)4 was prepared by ring-opening polymerization (ROP) of ε-caprolactone continued by click reaction of (PCL-azide)4 and PEG-alkyne. The synthesis of Y-shaped PEG–(PCL)2 block copolymer was carried out via Diels-Alder click reaction of a furan protected maleimide end-functionalized PEG (PEG-MI) with an anthracene end-functionalized PCL following the ROP of ε-caprolactone. The characterization of micelles is carried out using both materials in aqueous media as drug delivery vehicles, which showed satisfying results and enhanced the cytotoxic effect of the anti-cancer drug vinorelbine (VLB). However, micelles consisted of Y-shaped unimers were found to be more convenient for delivery of hydrophobic drugs such as VLB because they formed in lower concentration, carrying a higher amount of drugs and owing a monomodal distribution. We concluded that the free tails of hydrophobic chains in Y-shaped block copolymer facilitate the assembly of amphiphilic material in water to form micelles

    Solubilization of Therapeutic Agents in Micellar Nanomedicines

    No full text
    We use atomistic molecular dynamics simulations to reveal the binding mechanisms of therapeutic agents in PEG-ylated micellar nanocarriers (SSM). In our experiments, SSM in buffer solutions can solubilize either ≈11 small bexarotene molecules or ≈6 (2 in low ionic strength buffer) human vasoactive intestinal peptide (VIP) molecules. Free energy calculations reveal that molecules of the poorly water-soluble drug bexarotene can reside at the micellar ionic interface of the PEG corona, with their polar ends pointing out. Alternatively, they can reside in the alkane core center, where several bexarotene molecules can self-stabilize by forming a cluster held together by a network of hydrogen bonds. We also show that highly charged molecules, such as VIP, can be stabilized at the SSM ionic interface by Coulombic coupling between their positively charged residues and the negatively charged phosphate headgroups of the lipids. The obtained results illustrate that atomistic simulations can reveal drug solubilization character in nanocarriers and be used in efficient optimization of novel nanomedicines

    Expression and localization of VPAC1, the major receptor of vasoactive intestinal peptide along the length of the intestine

    No full text
    Vasoactive intestinal peptide (VIP) is an endogenous neuropeptide with a broad array of physiological functions in many organs including the intestine. Its actions are mediated via G protein-coupled receptors, and vasoactive intestinal peptide receptor 1 (VPAC1) is the key receptor responsible for majority of VIP's biological activity. The distribution of VPAC1 along the length of the gastrointestinal tract and its subcellular localization in intestinal epithelial cells have not been fully characterized. The current studies were undertaken to determine VPAC1 distribution and localization so that VIP-based therapies can be targeted to specific regions of the intestine. The results indicated that the mRNA levels of VPAC1 showed an abundance pattern of colon > ileum > jejunum in the mouse intestine. In parallel, the VPAC1 protein levels were higher in the mouse colon, followed by the ileum and jejunum. Immunofluorescence studies in mouse colon demonstrated that the receptor was specifically localized to the luminal surface, as was evident by colocalization with the apical marker villin but not with the basolateral marker Na+/K+-ATPase. In the human intestine, VPAC1 mRNA expression exhibited a distribution similar to that in mouse intestine and was highest in the sigmoid colon. Furthermore, in the human colon, VPAC1 also showed predominantly apical localization. The physiological relevance of the expression and apical localization of VPAC1 remains elusive. We speculate that apical VPAC1 in intestinal epithelial cells may have relevance in recognizing secreted peptides in the intestinal lumen and therefore supports the feasibility of potential therapeutic and targeting use of VIP formulations via oral route to treat gastrointestinal diseases.NEW & NOTEWORTHY These studies for the first time present comprehensive data on the relative characterization of vasoactive intestinal peptide (VIP) receptors in the intestinal mucosa. Vasoactive intestinal peptide receptor 1 (VPAC1) was identified as the predominant receptor with higher levels in the colon compared with the small intestine and was mainly localized to the apical membrane. In addition, the findings in the human tissues were consistent with VPAC1 expression in the mouse intestine and open possibilities to target colonic tissues with VIP for treating diseases such as inflammatory bowel disease
    corecore