573 research outputs found

    Direct Imaging of Fine Structures in Giant Planet Forming Regions of the Protoplanetary Disk around AB Aurigae

    Full text link
    We report high-resolution 1.6 \micron polarized intensity (PIPI) images of the circumstellar disk around the Herbig Ae star AB Aur at a radial distance of 22 AU (0."150."15) up to 554 AU (3.""85), which have been obtained by the high-contrast instrument HiCIAO with the dual-beam polarimetry. We revealed complicated and asymmetrical structures in the inner part (\lesssim140 AU) of the disk, while confirming the previously reported outer (rr \gtrsim200 AU) spiral structure. We have imaged a double ring structure at \sim40 and \sim100 AU and a ring-like gap between the two. We found a significant discrepancy of inclination angles between two rings, which may indicate that the disk of AB Aur is warped. Furthermore, we found seven dips (the typical size is \sim45 AU or less) within two rings as well as three prominent PIPI peaks at \sim40 AU. The observed structures, including a bumpy double ring, a ring-like gap, and a warped disk in the innermost regions, provide essential information for understanding the formation mechanism of recently detected wide-orbit (rr >>20 AU) planets.Comment: 12 pages, 3 figure

    Discovery of Small-Scale Spiral Structures in the Disk of SAO 206462 (HD 135344B): Implications for the Physical State of the Disk from Spiral Density Wave Theory

    Full text link
    We present high-resolution, H-band, imaging observations, collected with Subaru/HiCIAO, of the scattered light from the transitional disk around SAO 206462 (HD 135344B). Although previous sub-mm imagery suggested the existence of the dust-depleted cavity at r~46AU, our observations reveal the presence of scattered light components as close as 0.2" (~28AU) from the star. Moreover, we have discovered two small-scale spiral structures lying within 0.5" (~70AU). We present models for the spiral structures using the spiral density wave theory, and derive a disk aspect ratio of h~0.1, which is consistent with previous sub-mm observations. This model can potentially give estimates of the temperature and rotation profiles of the disk based on dynamical processes, independently from sub-mm observations. It also predicts the evolution of the spiral structures, which can be observable on timescales of 10-20 years, providing conclusive tests of the model. While we cannot uniquely identify the origin of these spirals, planets embedded in the disk may be capable of exciting the observed morphology. Assuming that this is the case, we can make predictions on the locations and, possibly, the masses of the unseen planets. Such planets may be detected by future multi-wavelengths observations.Comment: 8 pages, 5 figures, ApJL in press, typo correcte

    High-Resolution Near-Infrared Polarimetry of a Circumstellar Disk around UX Tau A

    Full text link
    We present H-band polarimetric imagery of UX Tau A taken with HiCIAO/AO188 on the Subaru Telescope. UX Tau A has been classified as a pre-transitional disk object, with a gap structure separating its inner and outer disks. Our imagery taken with the 0.15 (21 AU) radius coronagraphic mask has revealed a strongly polarized circumstellar disk surrounding UX Tau A which extends to 120 AU, at a spatial resolution of 0.1 (14 AU). It is inclined by 46 \pm 2 degree as the west side is nearest. Although SED modeling and sub-millimeter imagery suggested the presence of a gap in the disk, with the inner edge of the outer disk estimated to be located at 25 - 30 AU, we detect no evidence of a gap at the limit of our inner working angle (23 AU) at the near-infrared wavelength. We attribute the observed strong polarization (up to 66 %) to light scattering by dust grains in the disk. However, neither polarization models of the circumstellar disk based on Rayleigh scattering nor Mie scattering approximations were consistent with the observed azimuthal profile of the polarization degrees of the disk. Instead, a geometric optics model of the disk with nonspherical grains with the radii of 30 micron meter is consistent with the observed profile. We suggest that the dust grains have experienced frequent collisional coagulations and have grown in the circumstellar disk of UX Tau A.Comment: 20 pages, 8 figures, and 1 table. accepted to PAS

    Expansion of Vortex Cores by Strong Electronic Correlation in La2x_{2-x}Srx_xCuO4_4 at Low Magnetic Induction

    Full text link
    The vortex core radius \rv, defined as the peak position of the supercurrent around the vortex, has been determined by muon spin rotation measurements in the mixed state of \lscox for x=0.13x=0.13, 0.15, and 0.19. At lower doping (x=0.13 and 0.15), \rv(T) increases with decreasing temperature T, which is opposite to the behavior predicted by the conventional theory. Moreover, \rv(T\to0) is significantly larger than the Ginsburg-Landau coherence length determined by the upper critical field, and shows a clear tendency to decrease with increasing the doping x. These features can be qualitatively reproduced in a microscopic model involving antiferromagnetic electronic correlations.Comment: 6 pages, 4 figures, to be published in Phys. Rev.

    Damage assessment of tunnels caused by the 2004 Mid Niigata Prefecture Earthquake using Hayashi’s quantification theory type II

    Get PDF
    Mountain tunnels, being underground structures and situated deep within rock layers, are generally considered to suffer appreciably less damage from earthquakes than surface structures. However, it has been reported that many tunnels were damaged by the 1923 Great Kantou earthquake, the 1995 Great Hanshin Earthquake, the 1999 Taiwan Chi-Chi Earthquake, the 2004 Mid Niigata Prefecture Earthquake and the May 2008 Great Wenchuan Earthquake in China. In this study, the damaged tunnels resulted of the 2004 Mid Niigata Prefecture Earthquake are the study objects. The damage patterns are analyzed, and the information which is considered to be of influence, such as the distance to epicenter, the completion time, the geological conditions, etc., are collected. A database of the damaged tunnels has been created using a Geographic Information System (GIS). The influence ranking for these factors has been analyzed using Hayashi\u27s quantification theory II. The degree of the tunnel damage has also been assessed using GIS and Hayashi\u27s quantification theory II. The field investigation is in close agreement with the assessment results following Hayashi\u27s quantification theory II
    corecore