76 research outputs found

    Adsorption characteristics of bovine serum albumin onto alumina with a specific crystalline structure

    Get PDF
    Bone cement containing alumina particles with a specific crystalline structure exhibits the ability to bond with bone. These particles (AL-P) are mainly composed of delta-type alumina (δ-Al2O3). It is likely that some of the proteins present in the body environment are adsorbed onto the cement and influence the expression of its bioactivity. However, the effect that this adsorption of proteins has on the bone-bonding mechanism of bone cement has not yet been elucidated. In this study, we investigated the characteristics of the adsorption of bovine serum albumin (BSA) onto AL-P and compared them with those of its adsorption onto hydroxyapatite (HA), which also exhibits bone-bonding ability, as well as with those of adsorption onto alpha-type alumina (α-Al2O3), which does not bond with bone. The adsorption characteristics of BSA onto AL-P were very different from those onto α-Al2O3 but quite similar to those onto HA. It is speculated that BSA is adsorbed onto AL-P and HA by interionic interactions, while it is adsorbed onto α-Al2O3 by electrostatic attraction. The results suggest that the specific adsorption of albumin onto implant materials might play a role in the expression of the bone-bonding abilities of the materials

    Self-trapped electrons and holes in PbBr2_2 crystals

    Get PDF
    We have directly observed self-trapped electrons and holes in PbBr2_{2} crystals with electron-spin-resonance (ESR) technique. The self-trapped states are induced below 8 K by two-photon interband excitation with pulsed 120-fs-width laser light at 3.10 eV. Spin-Hamiltonian analyses of the ESR signals have revealed that the self-trapping electron centers are the dimer molecules of Pb2_23+^{3+} along the crystallographic a axis and the self-trapping hole centers are those of Br2_2^- with two possible configurations in the unit cell of the crystal. Thermal stability of the self-trapped electrons and holes suggests that both of them are related to the blue-green luminescence band at 2.55 eV coming from recombination of spatially separated electron-hole pairs.Comment: 8 pages (7 figures, 2 tables), ReVTEX; revised the text and figures 1, 4, and

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF

    West Nile Virus Inhibits the Signal Transduction Pathway of Alpha Interferon

    No full text
    West Nile virus (WNV) is a human pathogen that can cause neurological disorders, including meningoencephalitis. Experiments with mice and mammalian cell cultures revealed that WNV exhibited resistance to the innate immune program induced by alpha interferon (IFN-α). We have investigated the nature of this inhibition and have found that WNV replication inhibited the activation of many known IFN-inducible genes, because it prevented the phosphorylation and activation of the Janus kinases JAK1 and Tyk2. As a consequence, activation of the transcription factors STAT1 and STAT2 did not occur in WNV-infected cells. Moreover, we demonstrated that the viral nonstructural proteins are responsible for this effect. Thus, our results provided an explanation for the observed resistance of WNV to IFN-α in cells of vertebrate origin
    corecore