42 research outputs found

    Morphological Studies on Seeds of Scrophulariaceae s.l. and Their Systematic Significance

    Get PDF
    This study employed scanning electron microscopy and light microscopy to observe seed surface micromorphology and seed coat anatomy in the Scrophulariaceae s.l. to investigate seed characters of taxonomic importance. Seeds of 41 taxa corresponding to 13 genera of the family were carefully investigated. Seeds were minute and less than or slightly larger than 1 millimeter in length except for Melampyrum and Pedicularis species. The seed shape ranged from elliptical to broad elliptical and ovoid. In the studied species the surface sculpture was predominantly reticulate-striate, regular reticulate, sometimes colliculate, and rugose, or - rarely - ribbed, as in Lindernia procumbens and Paulownia coreana. Seed coats comprised the epidermis and the endothelium. Nevertheless, in all Melampyrum and some Veronica species the seed coat was very poorly represented and only formed by a papery layer of epidermis. According to correspondence analysis (CA) and unweighted pair group method with arithmetic mean (UPGMA) based cluster analysis the close affinities among the species of Scrophularia were well supported by their proximity to one another. Similarly, the proximity of Melampyrum species and Pedicularis species cannot be denied. In contrast, Veronica species were divided into two groups in CA plots and even three in the UPGMA tree. Regardless of the limited range taxa considered we found that similarities and differences in seed morphology between different genera could help us to understand the systematic relationships involved

    Lifelong physical activity is associated with promoter hypomethylation of genes involved in metabolism, myogenesis, contractile properties and oxidative stress resistance in aged human skeletal muscle

    Get PDF
    Abstract Lifelong regular physical activity is associated with reduced risk of type 2 diabetes (T2D), maintenance of muscle mass and increased metabolic capacity. However, little is known about epigenetic mechanisms that might contribute to these beneficial effects in aged individuals. We investigated the effect of lifelong physical activity on global DNA methylation patterns in skeletal muscle of healthy aged men, who had either performed regular exercise or remained sedentary their entire lives (average age 62 years). DNA methylation was significantly lower in 714 promoters of the physically active than inactive men while methylation of introns, exons and CpG islands was similar in the two groups. Promoters for genes encoding critical insulin-responsive enzymes in glycogen metabolism, glycolysis and TCA cycle were hypomethylated in active relative to inactive men. Hypomethylation was also found in promoters of myosin light chain, dystrophin, actin polymerization, PAK regulatory genes and oxidative stress response genes. A cluster of genes regulated by GSK3β-TCF7L2 also displayed promoter hypomethylation. Together, our results suggest that lifelong physical activity is associated with DNA methylation patterns that potentially allow for increased insulin sensitivity and a higher expression of genes in energy metabolism, myogenesis, contractile properties and oxidative stress resistance in skeletal muscle of aged individuals

    One-dimensional fluids with second nearest-neighbor interactions

    Full text link
    As is well known, one-dimensional systems with interactions restricted to first nearest neighbors admit a full analytically exact statistical-mechanical solution. This is essentially due to the fact that the knowledge of the first nearest-neighbor probability distribution function, p1(r)p_1(r), is enough to determine the structural and thermodynamic properties of the system. On the other hand, if the interaction between second nearest-neighbor particles is turned on, the analytically exact solution is lost. Not only the knowledge of p1(r)p_1(r) is not sufficient anymore, but even its determination becomes a complex many-body problem. In this work we systematically explore different approximate solutions for one-dimensional second nearest-neighbor fluid models. We apply those approximations to the square-well and the attractive two-step pair potentials and compare them with Monte Carlo simulations, finding an excellent agreement.Comment: 26 pages, 12 figures; v2: more references adde

    Virmid: accurate detection of somatic mutations with sample impurity inference

    Full text link
    Detection of somatic variation using sequence from disease-control matched data sets is a critical first step. In many cases including cancer, however, it is hard to isolate pure disease tissue, and the impurity hinders accurate mutation analysis by disrupting overall allele frequencies. Here, we propose a new method, Virmid, that explicitly determines the level of impurity in the sample, and uses it for improved detection of somatic variation. Extensive tests on simulated and real sequencing data from breast cancer and hemimegalencephaly demonstrate the power of our model. A software implementation of our method is available at http://sourceforge.net/projects/virmid/

    Families of non-congruent numbers with odd prime factors of the form 8k+3

    No full text
    A congruent number is a positive integer which can be represented as the area of a right triangle such that all of its side lengths are rational numbers. The problem determining whether a given number is congruent is usually studied by computing the Mordell-Weil rank of the corresponding elliptic curve. The Monsky matrix gives a way to compute efficiently the 2-Selmer rank, thereby gives an upper bound for the Mordell-Weil rank. In this paper, by using Monsky's matrix, we present new families of non-congruent numbers such that all of their odd prime factors are of the form 8k+3. Our result generalizes previous works of Reinholz-Spearman-Yang [12] and Cheng-Guo [3]. (C) 2021 Elsevier Inc. All rights reserved

    A Study on the Genetic Variations and Germination Characteristics of <i>Rhododendron sobayakiense</i> to Prepare for Climate Change Threat

    No full text
    Rhododendron sobayakiense is an endemic and near-threatened species (Korean Red List, NT) found in the alpine regions of South Korea that requires conservation. This study investigated the species’ genetic variations and seed germination characteristics and predicted its potential habitat change according to climate change scenarios. The genetic diversity of R. sobayakiense at the species level (P = 88.6%; S.I. = 0.435; h = 0.282) was somewhat similar to that observed for the same genus. The inter-population genetic differentiation was 19% and revealed a relatively stable level of gene exchange at 1.22 in each population. The main cause of gene flow and genetic differentiation was presumed to be the Apis mellifera pollinator. Seed germination characteristics indicated non-deep physiological dormancy, with germination at ≥10 °C and the highest percent germination (PG) of ≥60% at 15–25 °C, while the PG was ≥50% at 30 °C. The PG increased at constant temperature than at variable temperatures; the mean germination time decreased as temperature increased. The climate scenarios SSP3 and SSP5 were analyzed to predict future R. sobayakiense habitat changes. The variables of the main effects were Identified as follows: elevation > temperature seasonality > mean diurnal range
    corecore