159 research outputs found

    Bending-Filament Model for the Buckling and Coiling Instability of Viscous Fluid Rope

    Full text link
    A simple model is proposed for the buckling and coiling instability of a viscous "fluid rope" falling on a plane. By regarding a fluid rope as a one-dimensional flow, this model accounts for only the axial and shared viscous forces. Our model successfully reproduces several experiments with no adjustable parameters, such as the existence of three distinct coiling regimes reported in Phys. Rev. Lett. 93, 214502 (2004). Our model allows for the discussion of unsteady motion. An expression for the critical fall height at which the coiling frequency changes from a decrease to increase was phenomenologically derived. It was found that the coil-uncoil transition shows remarkable hysteresis only for weak gravity condition.Comment: 4 pages, 6 figure

    A theoretical and numerical approach to "magic angle" of stone skipping

    Full text link
    We investigate oblique impacts of a circular disk and water surface. An experiment [ Clanet, C., Hersen, F. and Bocquet, L., Nature 427, 29 (2004) ] revealed that there exists a "magic angle" of 20 [deg.] between a disk face and water surface which minimize the required speed for ricochet. We perform 3-dimensional simulation of the water impacts using the Smoothed Particle Hydrodynamics (SPH) and analyze the results with an ordinal differential equation (ODE) model. Our simulation is in good agreement with the experiment. The analysis with the ODE model give us a theoretical insight for the ``magic angle" of stone skipping.Comment: 4 pages, 4figure

    Collision of One-Dimensional Nonlinear Chains

    Full text link
    We investigate one-dimensional collisions of unharmonic chains and a rigid wall. We find that the coefficient of restitution (COR) is strongly dependent on the velocity of colliding chains and has a minimum value at a certain velocity. The relationship between COR and collision velocity is derived for low-velocity collisions using perturbation methods. We found that the velocity dependence is characterized by the exponent of the lowest unharmonic term of interparticle potential energy

    Spatially resolved metabolic distribution for unraveling the physiological change and responses in tomato fruit using matrix-assisted laser desorption/ionization–mass spectrometry imaging (MALDI–MSI)

    Get PDF
    Information on spatiotemporal metabolic behavior is indispensable for a precise understanding of physiological changes and responses, including those of ripening processes and wounding stress, in fruit, but such information is still limited. Here, we visualized the spatial distribution of metabolites within tissue sections of tomato (Solanum lycopersicum L.) fruit using a matrix-assisted laser desorption/ionization–mass spectrometry imaging (MALDI–MSI) technique combined with a matrix sublimation/recrystallization method. This technique elucidated the unique distribution patterns of more than 30 metabolite-derived ions, including primary and secondary metabolites, simultaneously. To investigate spatiotemporal metabolic alterations during physiological changes at the whole-tissue level, MALDI–MSI was performed using the different ripening phenotypes of mature green and mature red tomato fruits. Although apparent alterations in the localization and intensity of many detected metabolites were not observed between the two tomatoes, the amounts of glutamate and adenosine monophosphate, umami compounds, increased in both mesocarp and locule regions during the ripening process. In contrast, malate, a sour compound, decreased in both regions. MALDI–MSI was also applied to evaluate more local metabolic responses to wounding stress. Accumulations of a glycoalkaloid, tomatine, and a low level of its glycosylated metabolite, esculeoside A, were found in the wound region where cell death had been induced. Their inverse levels were observed in non-wounded regions. Furthermore, the amounts of both compounds differed in the developmental stages. Thus, our MALDI–MSI technique increased the understanding of the physiological changes and responses of tomato fruit through the determination of spatiotemporally resolved metabolic alterations

    Critical contribution of MCL-1 in EMT-associated chemo-resistance in A549 non-small-cell lung cancer

    Get PDF
    Non-small cell lung cancer (NSCLC) is one of the leading causes of death in all lung cancer patients due to its metastatic spread. Even though cisplatin treatment after surgical resection of the primary tumor has been established as a standard chemotherapy for residual disease including metastatic spread, NSCLC often acquires a resistance against chemotherapy, and metastatic disease is often observed. Amongst many potential mechanisms, epithelial-to-mesenchymal transition (EMT) has been considered as an important process in acquiring both metastatic spread and chemo-resistance of NSCLC. In this study, we identified MCL-1 as a critical molecule for chemoresistance in A549 cells associated with TGF-β-induced EMT. Importantly, downregulation of MCL-1 by siRNA or inhibition of MCL-1 with pan-BCL2 inhibitor to inhibit MCL-1 was able to overcome the EMT-associated chemo-resistance in A549 cells. Collectively, MCL-1 can be a new therapeutic target for overcoming EMT-associated chemo-resistance in NSCLC patients in the context of post-operative chemotherapies

    Association of initial lactate levels and red blood cell transfusion strategy with outcomes after severe trauma: a post hoc analysis of the RESTRIC trial

    Get PDF
    Background The appropriateness of a restrictive transfusion strategy for those with active bleeding after traumatic injury remains uncertain. Given the association between tissue hypoxia and lactate levels, we hypothesized that the optimal transfusion strategy may differ based on lactate levels. This post hoc analysis of the RESTRIC trial sought to investigate the association between transfusion strategies and patient outcomes based on initial lactate levels. Methods We performed a post hoc analysis of the RESTRIC trial, a cluster-randomized, crossover, non-inferiority multicenter trials, comparing a restrictive and liberal red blood cell transfusion strategy for adult trauma patients at risk of major bleeding. This was conducted during the initial phase of trauma resuscitation; from emergency department arrival up to 7 days after hospital admission or intensive care unit (ICU) discharge. Patients were grouped by lactate levels at emergency department arrival: low ( Results Of the 422 RESTRIC trial participants, 396 were analyzed, with low (n = 131), middle (n = 113), and high (n = 152) lactate. Across all lactate groups, 28 days mortality was similar between strategies. However, in the low lactate group, the restrictive approach correlated with more ICU-free (β coefficient 3.16; 95% CI 0.45 to 5.86) and ventilator-free days (β coefficient 2.72; 95% CI 0.18 to 5.26) compared to the liberal strategy. These findings persisted even after excluding patients with severe traumatic brain injury. Conclusions Our results suggest that restrictive transfusion strategy might not have a significant impact on 28-day survival rates, regardless of lactate levels. However, the liberal transfusion strategy may lead to shorter ICU- and ventilator-free days for patients with low initial blood lactate levels
    corecore