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1. Introduction  

Multi-robot system is one of the most attractive systems in robotics, and many researchers 
have been investigating it from various viewpoints (Cao, 1997; Balch & Parker, 2002; Parker, 
2003). Remarkable point of multi-robot system is that the robots are cooperatively able to 
complete a task that a single robot can hardly or cannot accomplish by itself. Especially, 
searching, transportation or conveyance, construction, and pattern formation are typical 
categories which are suitable for multi-robot system, and a lot of concrete tasks can be found 
in each category. Some approaches have been considered and proposed to accomplish them, 
and biology inspired robotics is one of the most effective method to develop useful multi-
robot system. Actually, many researchers have been applying this approach to design multi-
robot system (Bonabeau, 1999).  
 In this article, we treat collective motion of motile elements which was inspired by living 
things such as fishes, birds and small insects, assuming to apply to real robot system. It is 
considered that the collective motion of the robots can be utilized for some significant tasks 
such as traffic control, ground/ocean surveillance (Ogen, 2004), and so on.  
 This article is organized as follows. In section 2, we explain a fundamental kinetic model of 
collective behaviors based on the livings. Result of numerical simulation and analysis are 
shown in Section 3. In section 4, we show small scale of experiment based on the model.   

2. Kinetic model for collective motions 

Many animals form groups which we consider as cooperative systems of active elements. 
The collective motions of animals show extreme diversity of dynamics and patterns 
(Edelstein-Keshet, 1990; Partridge, 1982; Wilson 1975) For example, migrant fish, like the 
sardine, tend to school by aligning their headings and keeping a fixed mutual distance. 
Large birds such as cranes migrate in well-ordered formations with constant cluster 
velocity. Small birds such as sparrows fly in wandering, disordered aggregates. Insects, such 
as the mosquito, fly at random within spatially limited swarms. There seems a tendency that 
the smaller the size of animals, the more disorder in cluster motions, at least, for some flying 
or swimming animals. Many model equations claim to explain the collective motions of 

Source: Human-Robot Interaction, Book edited by Nilanjan Sarkar,
ISBN 978-3-902613-13-4, pp.522, September 2007, Itech Education and Publishing, Vienna, Austria
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animals (Niwa, 1994; Doustari & Sannomiya, 1992; Vicsek et al., 1995). Most postulate that 
individuals are simply particles with the mutual interactions and motive force. In this 
simplification, the equations of motion become Newtonian equations for the particles, and 
the dependence on the characteristic scales of animals appears only through their mass.  The 
resulting collective motions are mostly regular and ordered. Swarming, disordered 
aggregates and wandering, require external random perturbations.  
 To generalize these models, we introduce extended internal variables describing the 
particles, which we call motile elements (Shimoyama et al., 1996). Basically, the motion of i-

th element is described with a position vector ir  and a velocity vector iv  which are relative 

to fluid or air. Although the internal variables may have physical, physiological or 
ecological origins in each species, we additionally use a simple physical vector degree of 

freedom; the heading unit vector in , parallel to the axis of the animal. Large birds often glide. 

In a glide, the heading, in , and the velocity vector, iv , need not be parallel. Therefore, we 

assume that in  and iv  relax to parallel with relaxation time τ. Including the heading 

dynamics, we propose a kinetic model of N interacting motile elements. For simplicity, we 
consider two-dimensions, but the model is easily extensible to three-dimensions. The state 

variables for the i-th element are the position vector ir , the velocity vector iv , and the 

heading unit vector in , and these variables have the following dynamics:   
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where iθ  is the angle between the unit vector in  and a certain direction, say, the x axis 

( )sin,(cos iiin θθ= ), and iφ  is the angle between the velocity vector iv  and the x

axis( )sin,(cos iiii vv φφ= ) (Fig.1).   

Figure 1. Schematic diagram for Newton’s equation of motion for particles (left) , and the 

dynamics of the heading (right). The relaxation time τ of birds is much larger than that of 
fishes
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In this model, every element is identical except for initial conditions. Eq.(1) is Newton's 
equation of motion for particles of mass m, is the resistive coefficient based on Stokes's law 
for an element moving in fluid. We assume that the motile force a acts in the heading 

direction in . The term ijf  represents mutual attractive and repulsive forces between the i-th

and j-th elements, and ig  is the force toward the center of group, which is taken as the 

gravitational center in our model. We use the analogy with the intermolecular forces as 
introduced by Breder (1954) based on the observations for fish schooling (see also (Aoki, 
1980; Breder, 1976)). We assume that the interaction force is given by: 
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where c is a parameter that represents the magnitude of interactions and rc the optimal 
distance between neighbors.  
The interaction need not be isotropic. If the interaction is based on visual information, the 
interaction with elements in front of a given element is stronger than with those behind. 
Therefore, we introduce a direction sensitivity factor described by: 
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where Φ implies the angle formed by n  and ij rr − .  Here a new parameter d is introduced 

to control the anisotropy of sensitivity. When d=0, the interaction is isotropic. 

Figure 2. Schematic images of interaction force. (a) in case of d=0. (b) in case of d=1

Furthermore, we introduce a global attraction force 
ig  given by: 
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where ig  is the center of group, i.e.,
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Nrg
i

i /=  (6) 

In the following discussions, we assume these two interaction forces have the same order of 
magnitude, i.e., c = cg.

The velocity vector iv  need not be in the heading direction in , because of the inertial 

moment of the animal's body. We assume that the heading is parallel to the velocity for 
linear motion. We use equation (2) to relax the difference between the heading angle and the 

velocity direction angle. The relaxation time τ is related to the inertial moment and drag of 
the animal's body, and the time scale of maneuvering, such as the flapping period of wings 
or fins for birds or fishes, or tumbling period of flagella for bacteria. If the individuals are 

small (the inertial moment is small) and fast in flapping, τ is small (Fig.1 (right)). 
To account for the tendency of animals to align their heads (Inoue, 1981; Hunter, 1966), we 

consider the interaction of  in  vectors. In the second term of the right hand side of Eq. (2), Jij

represents the tendency of individual i to align with individual j. We assume here that the 
interaction is a decreasing function of distance,  

1−

−
=

c

ij

ij
r

rr
kJ   (7) 

However, in the most of the present work we take k=0 if not specified.  

3. Numerical simulations and experiments 

3.1 Characteristic of collective behavior 

To investigate the qualitative properties of our model, we carried out numerical simulations 
for various control parameters and observed the collective motions. The equations of motion 

were solved with an explicit Euler method. Typical value of ∆t to avoid numerical instability 
was less than 0.01. Initially, motile elements are placed at random by using Gaussian 
distributed random vectors in two dimensions within the standard deviation on the order of 
the inter-neighbour distance, rc. The initial velocity of the elements is also given by Gaussian 

distributed random vectors with standard deviation of unity, and the heading vectors n  are 

set in random directions. 
We carried out numerical simulation for N ranging from 10 to 100, and we found several 
distinct collective behaviors which can be seen independently to N < 100. The trajectory of 
the center of the cluster are illustrated in Fig. 3. The trajectories are classified into four types.  
1. Marching: When the anisotropy of mutual attraction is small, the elements form a 

regular triangular crystal moving at constant velocity. The formation is stable against 
disturbance and velocity fluctuations are very small. We call this motion a marching 
state.

2. Oscillation: Several group motions exhibit regular oscillations, including:   
(i) Wavy motion of the cluster along a linear trajectory.  
(ii) A cluster circling a center outside the cluster.   
(iii) A cluster circling a center inside the cluster.  
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The stability of oscillatory motion is weaker than that of marching. Oscillatory clusters 
often occur near the boundary between wandering, and the oscillation and marching 
may coexist for some parameters.  

3. Wandering: For non-zero d, the center of the cluster can wander quite irregularly, while 
the lattice-like order inside the cluster persists. The mutual position of elements  
rearranges intermittently according to chaotic changes in the direction of motion. We 
call this behavior wandering. It occurs in flocks of birds, e.g., small non-migratory birds 
like the sparrow. 

4. Swarming: Beyond the wandering regime, we found more irregular motion, where the 
regularity within the cluster fails, although the cluster persists.  Compared to 
wandering, the velocity of elements has a wide distribution, and the mobility of the 
cluster is small, a behavior reminiscent of a cloud of mosquitoes.  

Figure 3. The trajectories of the elements (dotted lines) and the center of mass (solid line) 
obtained by numerical simulation. Each cluster consists of twelve motile elements (shown as 
white circle). Typical types of collective motions are shown as: (a) marching, (b) oscillatory 
(wavy), (c) wandering, and (d) swarming 

Marching and oscillation form an ordered phase, while the others form a disordered phase. 
In the ordered phase, elements behave as a regularly moving cluster which is stable against 
perturbations by external force or small changes of kinetic parameters. This kind of stability 
would be required for the grouping animals, too, because the cluster of traveling birds or 
fishes should be structural stable. On the contrary, in disordered phase, the motion of 
clusters become unpredictable, which would be beneficial for small animals to escape from 
predators.
We refer to the transition between order and disorder as the marching/swarming transition.  
We have examined the parameter dependence of the behavior, fixing the number of 

elements, N = 10. In Fig. 4, we show characteristic behaviors in τ - γ and τ - a space. Fig. 4(a) 
shows that the transition between marching and wandering is well defined and the 

boundary occurs when γ/τ ~ 20. Since γ is proportional to the relaxiation time in velocity, 

γ/τ gives the ratio of characteristic time for heading reoriantation and velocity relaxiation of 

individual elements. Fig. 4(b) shows that the transition line is approximately a ~ τ-1/2, which 
seems to be nontrivial.  

From similar plots, We obtain rc ~ τ and c ~ τ as transition lines. The former can be 
interpreted as the balancing of collision time between neighboring elements and heading 
relaxiation time, and the later the balancing of velocity and heading relaxations. These 
proportionalities suggest that we use dimensionless parameters. Futhermore, we expect that 
the proportionalities would held for larger N>10, while the factors, i.e., the positions of 
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transitions, might change. However, more specific transition lines, such as wandering/ 
swarming, are difficult to draw without introducing proper order parameters.   

Figure 4. Parameter dependence of collective behavior. (a) γ versus τ. (b) a versus τ. Here, 
white circles indicate marching, white triangles oscillation, black triangles wandering, and 
black rectangles swarming 

3.2 Dimensionless parameters 

Next, we derive the dimensionless representation of our model and classify its behaviors. To 
reduce the model equation to a dimensionless form, we rescale each variable by a 
characteristic dimension: the characteristic length crL ≡0  is comparable to the size of each 

individual, the steady state velocity γ/0 aV ≡  of elements, and the characteristic time 

arVLT c // 000 γ=≡ . Introducing the non-dimensional variables v’, t’, r’ defined by vVv ′= 0 ,

tTt ′= 0 , rLr ′= 0 , we obtain the following non-dimensional equations of motion for the i-th

element (Shimoyama et al., 1996):   

≠

−+′−=
′

′

ij
ijijii

i f
Q

nv
Rtd

vd
),

1
(

1
α   (8) 

).sin()sin(
1

ij
ij
ijii

i J
td

d

P
θθθφ

θ
−+−=

′ ≠

 (9) 

We have three independent dimensionless parameters P,Q and R defined by: 
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ma
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≡   (10) 

The physical interpretation of each parameter is: P is the ratio of the typical time scale for 

heading relaxation, τ and the “mean free time”, rcγ /a. Q is the ratio of the magnitude of the 
motive force and the interaction force with neighbors.  R is the ratio of the inertial force and 
the viscous force, which is resembles a “Reynolds number” in fluid mechanics.    
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3.3 Phase diagram 

We now review the numerical results, focusing on the marching/swarming transition, in the 
viscous regime where R < 0.05. Consider the dependence of the marching/swarming 
transition line in the phase diagram given in the previous section. At the transition line, we  

obtained γ∗∼τ∗, a∗~τ∗-1/2, c∗~τ∗, and rc
∗~τ∗, where ∗ signifies the boundary between the states. 

Using a new dimensionless parameter defined by QPG /≡ , these relations simplify to  

.
*2*

***

const
a

cr
G c ==

τ

γ
 (11) 

as shown in Fig. 5. All data from independent numerical simulations collapse onto the same 

representation, with the transition line at G∗=const.

Figure 5. Phase diagram of collective motions in the viscous regime (R < 0.05) obtained by 
independent numerical simulations by changing parameters (P versus Q). In the diagram, 
white circles indicate marching, white triangles oscillation, black triangles wandering, and 
black rectangles swarming 

3.4 Degree of disorder

To characterize the different collective motions quantitatively, we need suitable measures of 
disorder, i.e., disorder parameters. In ordered motions (marching and oscillating), the 
trajectory of each element occupies a very limited region in velocity space. In chaotic 
motions, both temporal fluctuations of cluster velocity and velocity deviations of elements 
are large. Thus, we can define several disorder parameters. Letting the velocity of the cluster 
at a moment t be,   

=
i
i tv

N
tV ),(

1
)(  (12) 

the fluctuation in velocity space can be evaluated by averaging the root mean square (r.m.s.)
velocity deviation over time; 

( ) .)()(
1 22
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i tVtv

N
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We can define a similar parameter, the fluctuation of V(t) over time, by  
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( ) .)()(
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2
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tVtVV −≡∆  (14) 

Both quantities are zero in ordered motions and non-zero in disordered motions. In the 
vicinity of the marching/swarming transition we calculated these quantities as a function of 
G as shown in Fig. 6. In the plot, both quantities are normalized by the average cluster 
velocity <V2>, and the square root of the values is shown. Using these parameters, the 

order-disorder transition appears as a change in the disorder parameters. <(∆V)2>1/2 and 

<(∆v)2>1/2 are a feasible way to characterize ordered vs. disordered motions. Above the 

transition, the transition point, G*, <(∆v)2>1/2/<(∆V)2>1/2 increases because the fluctuation of 
cluster motion approaches the cluster velocity. Fluctuations inside the cluster increase 

continuously as G increases. Swarming state corresponds to <(∆V)2>1/2/<V2>1/2 > 1 and 
wandering and swarming states are continuous. It should be noted that the transition 
becomes sharper as N increases. The transition point G* does not change. This suggests that 
the same transition can be seen for larger size of groupings. 

Figure 6. Characterization of the marching wandering transition in the viscous regime using 

disorder parameters. (a) <(∆V)2>1/2/<V2>1/2  and (b) <(∆v)2>1/2/<(∆V)2>1/2. The plots are 
made for several clusters of different size N from 10 to 50 

3.5 Modification for formation control

Proposed model described above shows a variety of the group motions, however, it only 
shows a regular triangular crystal formation and its boundary is round when we focus on 
the formation of the group. In nature, we can observe other type of formations as well as 
spherical structure observed in small fish school or the swarms of small insects. Large 
migratory birds tend to form linear structure, which is considered to be hydrodynamically 
advantageous. In robotics, there are some researches which focus on the formation control 
of multi-robot (Balch & Arkin, 1998; Fredslund, 2002; Jadbabaie, 2003; Savkin, 2004), and 
most of them introduce a kind of geometrical formation rules.  
Our interest is to express not only round-shaped structure but also other formations by 
modifying the above-mentioned model. In this section, modified model for formation 
control is explained, especially focusing on form of linear structure. Note that we just treat 
Newton’s equation of motion for particles and do not treat geometrical rules. 
The direction sensitivity is controlled by the parameter d in Eq.(4). From the simple analysis, 
we know that it is better to strengthen the direction sensitivity for linear formation. One of 
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the simplest way to strengthen the direction sensitivity is to use d2 instead of d in Eq.(4). But 
for more drastic modification, we found it is more effective to replace rc with cij r⋅α  instead 

of strengthen d. Schematic images of interaction force are shown in Fig.7.  

Figure 7. Images of interaction force in case of d=1, (a) rc=const., (b) rc=aij x const

Fig.8 shows a typical behavior of the system based on the modified model. As you see, they 
organize a double line structure. This formation is stable and robust to perturbation.  

Figure 8. Self-organization of double line structure 

We can also show that the angle between the forward direction and double line structure 
can be controled independently by modifying direction sensitivity. 

).cos(1 δα +Φ+= dij
  (15) 

we can design the heading angle by . Fig.9 shows the process that the double line structure 
is organized, in which heading angle is controlled as  = /6. 
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Figure 9. Self-organization of double line structure in case of δ=π / 6

4. Robot experiment 

4.1 Collective behavior of the group

Performance of this system is also confirmed by the experiment of real robot system. 
Miniature mobile robots Khepera, which is one of the most popular robots for experiments, 
are used here. As the sensors on the robot are insufficient to measure the direction and the 
distance between the robots, positions and directions of the robot are measured by the 
overhead camera and each robot determines its behavior based on this information.  
The model contains a degree of freedom for the heading. Khepera robot, however,  has no 
freedom for heading. So we divide the movement of the robots into two phases: the phase to 
update the position, and the phase to update their directions. Fig. 10 shows the snapshot of 
the experiment and the trajectories of the robots in case of "marching", "Oscillatory", and 
"wandering."  

Figure 10. Snapshots of the experiment in case of "marching", "oscillatory" and "wandering" 
behaviour (pictures), and trajectories of the robots (plots) 



Collective Motion of Multi-Robot System based on Simple Dynamics 367

4.2 Double line formation

The performance of the modified model is also confirmed by the robot experiment. The 
condition of the experiment is same as previous section. Fig.11 shows the snapshot of the 
experiment and the trajectories of the robots. We can see the robots organize double line 
formation.

Figure 11. Snapshots of the experiment in case of “double line formation” 

5. Summary 

In this article, we proposed a mathematical model which show several types of collective 
motions, and validated it. Firstly we constructed a model in which each element obeys the 
Newton equation with resistive and interactive force and has a degree of freedom of the 
heading vector which is parallel to the element axis, in addition to its position and velocity. 
Performance of the model was confirmed by numerical simulation, and we obtained several 
types of collective behavior, such as regular cluster motions, chaotic wandering and 
swarming of cluster without introducing random fluctuations. By introducing a set of 
dimensionless parameters, we formulated the collective motions and obtained the phase 
diagram and a new dimensionless parameter G. Lastly, we referred to the behaviour of 
extended model in which the anisotropy of the interaction force is modified, and showed the 
group organizes the double line formation.  
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