16 research outputs found

    Evaluating Medicinal Plants for Anticancer Activity

    Get PDF
    Plants have been used for medical purposes since the beginning of human history and are the basis of modern medicine. Most chemotherapeutic drugs for cancer treatment are molecules identified and isolated from plants or their synthetic derivatives. Our hypothesis was that whole plant extracts selected according to ethnobotanical sources of historical use might contain multiple molecules with antitumor activities that could be very effective in killing human cancer cells. This study examined the effects of three whole plant extracts (ethanol extraction) on human tumor cells. The extracts were from Urtica membranacea (Urticaceae), Artemesia monosperma (Asteraceae), and Origanum dayi post (Labiatae). All three plant extracts exhibited dose- and time-dependent killing capabilities in various human derived tumor cell lines and primary cultures established from patients’ biopsies. The killing activity was specific toward tumor cells, as the plant extracts had no effect on primary cultures of healthy human cells. Cell death caused by the whole plant extracts is via apoptosis. Plant extract 5 (Urtica membranacea) showed particularly strong anticancer capabilities since it inhibited actual tumor progression in a breast adenocarcinoma mouse model. Our results suggest that whole plant extracts are promising anticancer reagents

    α-Synuclein Expression Selectively Affects Tumorigenesis in Mice Modeling Parkinson's Disease

    Get PDF
    Alpha Synuclein (α-Syn) is a protein implicated in mechanisms of neuronal degeneration in Parkinson's disease (PD). α-Syn is primarily a neuronal protein, however, its expression is found in various tumors including ovarian, colorectal and melanoma tumors. It has been hypothesized that neurodegeneration may share common mechanisms with oncogenesis. We tested whether α-Syn expression affects tumorigenesis of three types of tumors. Specifically, B16 melanoma, E0771 mammary gland adenocarcinoma and D122 Lewis lung carcinoma. For this aim, we utilized transgenic mice expression the human A53T α-Syn form. We found that the in vivo growth of B16 and E0771 but not D122 was enhanced in the A53T α-Syn mice. The effect on tumorigenesis was not detected in age-matched APP/PS1 mice, modeling Alzheimer's disease (AD), suggesting a specific effect for α-Syn- dependent neurodegeneration. Importantly, transgenic α-Syn expression was detected within the three tumor types. We further show uptake of exogenously added, purified α-Syn, by the cultured tumor cells. In accord, with the affected tumorigenesis in the young A53T α-Syn mice, over- expression of α-Syn in cultured B16 and E0771 cells enhanced proliferation, however, had no effect on the proliferation of D122 cells. Based on these results, we suggest that certain forms of α-Syn may selectively accelerate cellular mechanisms leading to cancer

    Exploiting the Endogenous Ubiquitin Proteasome System in Targeted Cancer Treatment

    No full text
    To overcome the lack of specificity of cancer therapeutics and thus create a more potent and effective treatment, we developed a novel chimeric protein, IL2-Smurf2. Here, we describe the production of this chimeric IL2-Smurf2 protein and its variants, with inactive or over-active killing components. Using Western blots, we demonstrated the chimeric protein’s ability to specifically enter target cells alone. After entering the cells, the protein showed biological activity, causing cell death that was not seen with an inactive variant, and that was shown to be apoptotic. The chimeric protein also proved to be active as an E3 ligase, as demonstrated by testing total ubiquitination levels along with targeted ubiquitination for degradation. Finally, we tested IL2-Smurf2 and its variants in an in vivo mouse model of leukemia and demonstrated its potential as a drug for the targeted treatment of cancer cells. In the course of this work, we established for the first time the feasibility of the use of Smurf2 as a killing component in chimeric targeting proteins. Utilizing the IL2 cytokine to target cells overexpressing IL-2R and Smurf2 to cause protein degradation, we were able to produce a chimeric protein with dual functionality which causes targeted cell death

    Exploiting the Endogenous Ubiquitin Proteasome System in Targeted Cancer Treatment

    No full text
    To overcome the lack of specificity of cancer therapeutics and thus create a more potent and effective treatment, we developed a novel chimeric protein, IL2-Smurf2. Here, we describe the production of this chimeric IL2-Smurf2 protein and its variants, with inactive or over-active killing components. Using Western blots, we demonstrated the chimeric protein’s ability to specifically enter target cells alone. After entering the cells, the protein showed biological activity, causing cell death that was not seen with an inactive variant, and that was shown to be apoptotic. The chimeric protein also proved to be active as an E3 ligase, as demonstrated by testing total ubiquitination levels along with targeted ubiquitination for degradation. Finally, we tested IL2-Smurf2 and its variants in an in vivo mouse model of leukemia and demonstrated its potential as a drug for the targeted treatment of cancer cells. In the course of this work, we established for the first time the feasibility of the use of Smurf2 as a killing component in chimeric targeting proteins. Utilizing the IL2 cytokine to target cells overexpressing IL-2R and Smurf2 to cause protein degradation, we were able to produce a chimeric protein with dual functionality which causes targeted cell death

    TAT for Enzyme/Protein Delivery to Restore or Destroy Cell Activity in Human Diseases

    No full text
    Much effort has been dedicated in the recent decades to find novel protein/enzyme-based therapies for human diseases, the major challenge of such therapies being the intracellular delivery and reaching sub-cellular organelles. One promising approach is the use of cell-penetrating peptides (CPPs) for delivering enzymes/proteins into cells. In this review, we describe the potential therapeutic usages of CPPs (mainly trans-activator of transcription protein, TAT) in enabling the uptake of biologically active proteins/enzymes needed in cases of protein/enzyme deficiency, concentrating on mitochondrial diseases and on the import of enzymes or peptides in order to destroy pathogenic cells, focusing on cancer cells

    The Beneficial Effect of Mitochondrial Transfer Therapy in 5XFAD Mice via Liver–Serum–Brain Response

    No full text
    We recently reported the benefit of the IV transferring of active exogenous mitochondria in a short-term pharmacological AD (Alzheimer’s disease) model. We have now explored the efficacy of mitochondrial transfer in 5XFAD transgenic mice, aiming to explore the underlying mechanism by which the IV-injected mitochondria affect the diseased brain. Mitochondrial transfer in 5XFAD ameliorated cognitive impairment, amyloid burden, and mitochondrial dysfunction. Exogenously injected mitochondria were detected in the liver but not in the brain. We detected alterations in brain proteome, implicating synapse-related processes, ubiquitination/proteasome-related processes, phagocytosis, and mitochondria-related factors, which may lead to the amelioration of disease. These changes were accompanied by proteome/metabolome alterations in the liver, including pathways of glucose, glutathione, amino acids, biogenic amines, and sphingolipids. Altered liver metabolites were also detected in the serum of the treated mice, particularly metabolites that are known to affect neurodegenerative processes, such as carnosine, putrescine, C24:1-OH sphingomyelin, and amino acids, which serve as neurotransmitters or their precursors. Our results suggest that the beneficial effect of mitochondrial transfer in the 5XFAD mice is mediated by metabolic signaling from the liver via the serum to the brain, where it induces protective effects. The high efficacy of the mitochondrial transfer may offer a novel AD therapy

    α-Syn expression in B16 and E0771 enhances cell proliferation.

    No full text
    <p>(a). Stable poly-clones of B16 cells over expressing either human wt α-Syn, human β-Syn, amyloid precursor protein carrying the Swedish mutation (APPsw) or mock-transfected, were seeded in a 96-well plates at 5×10<sup>3</sup> cells per well. Proliferation was determined by the fluorescence ratio at 560ex/590em and normalized to the mock-transfected cells. A representative result of cells 48 hours post seeding. Mean ± SE of n = 6 wells out of three repeats. (b) Stable poly-clones of E0771 and (c) D122, seeded and measured as in (a). *, p<0.05, Mann-Whitney test.</p
    corecore