19 research outputs found

    3-D struktura serumske paraoksonaze 1 objašnjava njezinu aktivnost, stabilnost, topljivost i kristalizaciju

    Get PDF
    Serum paraoxonases (PONs) exhibit a wide range of physiologically important hydrolytic activities, including drug metabolism and detoxification of nerve gases. PON1 and PON3 reside on high-density lipoprotein (HDL) (the “good cholesterol”), and are involved in the alleviation of atherosclerosis. Members of the PON family have been identified not only in mammals and other vertebrates, but also in invertebrates. We earlier described the first crystal structure of a PON family member, a directly-evolved variant of PON1, at 2.2 Å resolution. PON1 is a 6-bladed beta-propeller with a unique active-site lid which is also involved in binding to HDL. The 3-D structure, taken together with directed evolution studies, permitted analysis of mutations which enhanced the stability, solubility and crystallizability of this PON1 variant. The structure permits a detailed description of PON1’s active site and suggests possible mechanisms for its catalytic activity on certain substrates.Serumske paraoksonaze (PONs) imaju široki raspon fiziološki važnih hidrolitičkih aktivnosti uključujući metabolizam lijekova i detoksikaciju nervnih plinova. PON1 i PON3 smještene su na lipoproteinima visoke gustoće (engl. high-density lipoprotein; HDL - “dobri kolesterol”) i uključene su u ublažavanje ateroskleroze. Članovi skupine PON identificirani su ne samo u sisavaca i drugih kralježnjaka već i kod beskralješnjaka. Prije smo opisali prvu kristalnu strukturu člana PON skupine, direktno razrađenu varijantu PON1 pri rezoluciji 2,2 Å. PON1 je beta-propeler sa šest lopatica s jedinstvenim poklopcem aktivnog mjesta, koji je tako|er uključen u vezanje na HDL. 3-D struktura, gledana zajedno s direktnim razvojnim istraživanjima, omogućila je analizu mutacija koje povećavaju stabilnost, topljivost i kristalizaciju te PON1 varijante. Struktura dopušta detaljan opis aktivnog mjesta PON1 i sugerira moguće mehanizme za njezinu katalitičku aktivnost prema odre|enim supstratima

    Intravenous Infusions of Glycerol Versus Propylene Glycol for the Regulation of Negative Energy Balance in Sheep: A Randomized Trial

    No full text
    Negative energy balance (NEB) is a state of insufficient dietary-energy consumption, characterized by the breakdown of adipose fat to meet the physiological energy expenditure. Extensive NEB, as common in high-yielding transitioning ruminants, drives significant metabolic disturbance and pathologies such as pregnancy toxemia and ketosis. Strategies to minimize the severity of NEB include the use of energy-dense feed supplements, like glycerol and propylene glycol (PG), or IV glucose infusion during severe hypoglycemia. PG and glycerol have been studied mainly by oral or ruminal administration, which exposes them to substantial metabolism in the digestive system. To investigate their direct benefits to mitigating NEB, we intravenously infused them into sheep induced into NEB by feed restriction. Sixteen 5-month-old ewe lambs at NEB were IV-treated with 170 mL isotonic saline containing 15% glycerol or 15% PG. Both PG and glycerol effectively reduced hyperketonemia by 57% and 61%, and inhibited adipose lipolysis by 73.6% and 73.3%, respectively. Surprisingly, only glycerol was glucogenic (p < 0.0001) and insulinotropic (p < 0.0075), while PG was primarily utilized for production of lactate (p < 0.0001). Tissue-damage biomarkers indicated hemolytic activity for PG. This study revealed glycerol as a superior IV treatment for effective relief of NEB. Since it carries no risk of glucose overloading, glycerol IV infusion may also have clinical advantages over glucose for treatment of pregnancy toxemia and ketosis
    corecore