4,695 research outputs found
Hydrodynamic Simulations of Oscillating Shock Waves in a Sub-Keplerian Accretion Flow Around Black Holes
We study the accretion processes on a black hole by numerical simulation. We
use a grid based finite difference code for this purpose. We scan the parameter
space spanned by the specific energy and the angular momentum and compare the
time-dependent solutions with those obtained from theoretical considerations.
We found several important results (a) The time dependent flow behaves close to
a constant height model flow in the pre-shock region and a flow with vertical
equilibrium in the post-shock region. (c) The infall time scale in the
post-shock region is several times higher than the free-fall time scale. (b)
There are two discontinuities in the flow, one being just outside of the inner
sonic point. Turbulence plays a major role in determining the locations of
these discontinuities. (d) The two discontinuities oscillate with two different
frequencies and behave as a coupled harmonic oscillator. A Fourier analysis of
the variation of the outer shock location indicates higher power at the lower
frequency and lower power at the higher frequency. The opposite is true when
the analysis of the inner shock is made. These behaviours will have
implications in the spectral and timing properties of black hole candidates.Comment: 19 pages, 13 figures, 1 Table MNRAS (In press
What's the point of knowing how?
Why is it useful to talk and think about knowledge-how? Using Edward Craig’s discussion of the function of the concepts of knowledge and knowledge-how as a jumping off point, this paper argues that considering this question can offer us new angles on the debate about knowledge-how. We consider two candidate functions for the concept of knowledge-how: pooling capacities, and mutual reliance. Craig makes the case for pooling capacities, which connects knowledge-how to our need to pool practical capacities. I argue that the evidence is much more equivocal. My suggested diagnosis is that the concept of knowledge-how plays both functions, meaning that the concept of knowledge-how is inconsistent, and that the debate about knowledge-how is at least partly a metalinguistic negotiation. In closing, I suggest a way to revise the philosophical concept of knowledge how
Applicability of ERTS-1 to Montana geology
The author has identified the following significant results. Late autumn imagery provides the advantages of topographic shadow enhancement and low cloud cover. Mapping of rock units was done locally with good results for alluvium, basin fill, volcanics, inclined Paleozoic and Mesozoic beds, and host strata of bentonite beds. Folds, intrusive domes, and even dip directions were mapped where differential erosion was significant. However, mapping was not possible for belt strata, was difficult for granite, and was hindered by conifers compared to grass cover. Expansion of local mapping required geologic control and encountered significant areas unmappable from ERTS imagery. Annotation of lineaments provided much new geologic data. By extrapolating test site comparisons, it is inferred that 27 percent of some 1200 lineaments mapped from western Montana represent unknown faults. The remainder appear to be localized mainly by undiscovered faults and sets of minor faults or joints
Applicability of ERTS-1 to lineament and photogeologic mapping in Montana: Preliminary report
A lineament map prepared from a mosaic of western Montana shows about 85 lines not represented on the state geologic map, including elements of a northeast-trending set through central western Montana which merit ground truth checking and consideration in regional structural analysis. Experimental fold annotation resulted in a significant local correction to the state geologic map. Photogeologic mapping studies produced only limited success in identification of rock types, but they did result in the precise delineation of a late Cretaceous or early Tertiary volcanic field (Adel Mountain field) and the mapping of a connection between two granitic bodies shown on the state map. Imagery was used successfully to map clay pans associated with bentonite beds in gently dipping Bearpaw Shale. It is already apparent that ERTS imagery should be used to facilitate preparation of a much needed statewide tectonic map and that satellite imagery mapping, aided by ground calibration, provides and economical means to discover and correct errors in the state geologic map
Return to driving after traumatic brain injury : a British perspective
Primary Objective: to identify current legal situation, and professional practice in assisting persons with traumatic brain injury (TBI) to return to safe driving after injury.
Methods and Procedures
A brief review of relevant literature, a description of the current statutory and quasi-statutory authorities regulating return to driving after TBI in the UK, and a description of the nature and resolution of clinical and practical dilemmas facing professionals helping return to safe driving after TBI. Each of the 15 UK mobility centres was contacted and literature requested; in addition a representative of each centre responded to a structured telephone survey.
Main Outcome and Results: The current situation in Great Britain is described, with a brief analysis of the strengths and weaknesses both of the current statutory situation, and also the practical situation (driving centres), with suggestions for improvements in practice.
Conclusion
Although brain injury may cause serious limitations in driving ability, previous drivers are not routinely assessed or advised regarding return to driving after TBI
First Detection of a Strong Magnetic Field on a Bursty Brown Dwarf: Puzzle Solved
We report the first direct detection of a strong, 5 kG magnetic field on the
surface of an active brown dwarf. LSR J1835+3259 is an M8.5 dwarf exhibiting
transient radio and optical emission bursts modulated by fast rotation. We have
detected the surface magnetic field as circularly polarized signatures in the
819 nm sodium lines when an active emission region faced the Earth. Modeling
Stokes profiles of these lines reveals the effective temperature of 2800 K and
log gravity acceleration of 4.5. These parameters place LSR J1835+3259 on
evolutionary tracks as a young brown dwarf with the mass of 554 M and age of 224 Myr. Its magnetic field is at least 5.1 kG and covers
at least 11% of the visible hemisphere. The active region topology recovered
using line profile inversions comprises hot plasma loops with a vertical
stratification of optical and radio emission sources. These loops rotate with
the dwarf in and out of view causing periodic emission bursts. The magnetic
field is detected at the base of the loops. This is the first time that we can
quantitatively associate brown dwarf non-thermal bursts with a strong, 5 kG
surface magnetic field and solve the puzzle of their driving mechanism. This is
also the coolest known dwarf with such a strong surface magnetic field. The
young age of LSR J1835+3259 implies that it may still maintain a disk, which
may facilitate bursts via magnetospheric accretion, like in higher-mass T
Tau-type stars. Our results pave a path toward magnetic studies of brown dwarfs
and hot Jupiters.Comment: ApJ, in pres
On the Polish doughnut accretion disk via the effective potential approach
We revisit the Polish doughnut model of accretion disks providing a
comprehensive analytical description of the Polish doughnut structure. We
describe a perfect fluid circularly orbiting around a Schwarzschild black hole,
source of the gravitational field, by the effective potential approach for the
exact gravitational and centrifugal effects. This analysis leads to a detailed,
analytical description of the accretion disk, its toroidal surface, the
thickness, the distance from the source. We determine the variation of these
features with the effective potential and the fluid angular momentum. Many
analytical formulas are given. In particular it turns out that the distance
from the source of the inner surface of the torus increases with increasing
fluid angular momentum but decreases with increasing energy function defined as
the value of the effective potential for that momentum. The location of torus
maximum thickness moves towards the external regions of the surface with
increasing angular momentum, until it reaches a maximum an then decreases.
Assuming a polytropic equation of state we investigate some specific cases.Comment: 33 pages, 28 figures, 1 table. This is a revised version to meet the
published articl
- …