4,740 research outputs found
Ice sheets as a significant source of highly reactive nanoparticulate iron to the oceans
The Greenland and Antarctic Ice Sheets cover ~\n10% of global land surface, but are rarely considered as active components of the global iron cycle. The ocean waters around both ice sheets harbour highly productive coastal ecosystems, many of which are iron limited. Measurements of iron concentrations in subglacial runoff from a large Greenland Ice Sheet catchment reveal the potential for globally significant export of labile iron fractions to the near-coastal euphotic zone. We estimate that the flux of bioavailable iron associated with glacial runoff is 0.40–2.54?Tg per year in Greenland and 0.06–0.17?Tg per year in Antarctica. Iron fluxes are dominated by a highly reactive and potentially bioavailable nanoparticulate suspended sediment fraction, similar to that identified in Antarctic icebergs. Estimates of labile iron fluxes in meltwater are comparable with aeolian dust fluxes to the oceans surrounding Greenland and Antarctica, and are similarly expected to increase in a warming climate with enhanced melting
Physics at International Linear Collider (ILC)
International Linear Collider (ILC) is an electron-positron collider with the
initial center-of-mass energy of 500 GeV which is upgradable to about 1 TeV
later on. Its goal is to study the physics at TeV scale with unprecedented high
sensitivities. The main topics include precision measurements of the Higgs
particle properties, studies of supersymmtric particles and the underlying
theoretical structure if supersymmetry turns out to be realized in nature,
probing alternative possibilities for the origin of mass, and the cosmological
connections thereof. In many channels, Higgs and leptonic sector in particular,
ILC is substantially more sensitive than LHC, and is complementary to LHC
overall. In this short article, we will have a quick look at the capabilities
of ILC.Comment: To appear in JPSJ Vol76 No1
Precision Calculations for Future Colliders
I discuss the motivations for, and the status of, precision calculations for
the Large Hadron Collider (LHC) and the planned International Linear Collider
(ILC).Comment: latex, uses ws-ijmpe.cls, 19 pages, 9 figures, 1 table, based on a
talk given at the symposium "50 Years of High Energy Physics at UB", to
appear in International Journal of Modern Physics
The Road Towards the ILC: Higgs, Top/QCD, Loops
The International Linear e+e- Collider (ILC) could go into operation in the
second half of the upcoming decade. Experimental analyses and theory
calculations for the physics at the ILC are currently performed. We review
recent progress, as presented at the LCWS06 in Bangalore, India, in the fields
of Higgs boson physics and top/QCD. Also the area of loop calculations,
necessary to achieve the required theory precision, is included.Comment: 7 pages, 1 figure. Plenary talk given at the LCWS06 March 2006,
Bangalore, India. Top part slightly enlarged, references adde
Master integrals for massive two-loop Bhabha scattering in QED
We present a set of scalar master integrals (MIs) needed for a complete
treatment of massive two-loop corrections to Bhabha scattering in QED,
including integrals with arbitrary fermionic loops. The status of analytical
solutions for the MIs is reviewed and examples of some methods to solve MIs
analytically are worked out in more detail. Analytical results for the pole
terms in epsilon of so far unknown box MIs with five internal lines are given.Comment: 23 pages, 5 tables, 12 figures, references added, appendix B enlarge
Beam Spot Position Measurement at the LEP Collider
A precise knowledge of the beam spot position is required for many physics topics at LEP2. The movement of the beam spot is studied at LEP1 using beam orbit monitors close to the interaction points and compared with measurements from tracks produced in e+e- collisions. The beam orbit monitors are found to follow the beam spot position well, particularly when corrected for movements of nearby quadrupole magnets. Data from the LEP high energy run of November 1995 are also analysed, and projections made for the prospects at LEP2
Lepton flavor violation two-body decays of quarkoniums
In this paper we firstly study various model-independent bounds on lepton
flavor violation (LFV) in processes of , and
two-body decays, then calculate their branch ratios % By using the constraints
from other ways, we obtain %the indirect bounds of in models of the leptoquark, violating
MSSM and topcolor assisted technicolor(TC2) models.Comment: 14 pages, 4 figures, submitted to PR
Lepton Flavor Violation in Supersymmetric SO(10) Grand Unified Models
The study for lepton flavor violation combined with the neutrino oscillation
may provide more information about the lepton flavor structure of the grand
unified theory. In this paper, we study two lepton flavor violation processes,
and , in the context of supersymmetric SO(10)
grand unified models. We find the two processes are both of phenomenological
interest. In particular the latter may be important in some supersymmetric
parameter space where the former is suppressed. Thus, Z-dacay may offer another
chance for looking for lepton flavor violation.Comment: 26 pages, 10 figure
Potentially bioavailable iron delivery by iceberg-hosted sediments and atmospheric dust to the polar oceans
Iceberg-hosted sediments and atmospheric dust transport potentially bioavailable iron to the Arctic and Southern oceans as ferrihydrite. Ferrihydrite is nanoparticulate and more soluble, as well as potentially more bioavailable, than other iron (oxyhydr)oxide minerals (lepidocrocite, goethite, and hematite). A suite of more than 50 iceberghosted sediments contain a mean content of 0.076 wt% Fe as ferrihydrite, which produces iceberg-hosted Fe fluxes ranging from 0.7 to 5.5 and 3.2 to 25 Gmoles yr 1 to the Arctic and Southern oceans respectively. Atmospheric dust (with little or no combustion products) contains a mean ferrihydrite Fe content of 0.038 wt% (corresponding to a fractional solubility of 1 %) and delivers much smaller Fe fluxes (0.02–0.07 Gmoles yr 1 to the Arctic Ocean and 0.0– 0.02 Gmoles yr 1 to the Southern Ocean). New dust flux data show that most atmospheric dust is delivered to sea ice where exposure to melting/re-freezing cycles may enhance fractional solubility, and thus fluxes, by a factor of approximately 2.5. Improved estimates for these particulate sources require additional data for the iceberg losses during fjord transit, the sediment content of icebergs, and samples of atmospheric dust delivered to the polar regions
Invisible Z-Boson Decays at e+e- Colliders
The measurement of the invisible Z-boson decay width at e+e- colliders can be
done "indirectly", by subtracting the Z-boson visible partial widths from the
Z-boson total width, or "directly", from the process e+e- -> \gamma \nu
\bar{\nu}. Both procedures are sensitive to different types of new physics and
provide information about the couplings of the neutrinos to the Z-boson. At
present, measurements at LEP and CHARM II are capable of constraining the
left-handed Z\nu\nu-coupling, 0.45 <~ g_L <~ 0.5, while the right-handed one is
only mildly bounded, |g_R| <= 0.2. We show that measurements at a future e+e-
linear collider at different center-of-mass energies, \sqrt{s} = MZ and
\sqrt{s}s ~ 170 GeV, would translate into a markedly more precise measurement
of the Z\nu\nu-couplings. A statistically significant deviation from Standard
Model predictions will point toward different new physics mechanisms, depending
on whether the discrepancy appears in the direct or the indirect measurement of
the invisible Z-width. We discuss some scenarios which illustrate the ability
of different invisible Z-boson decay measurements to constrain new physics
beyond the Standard Model
- …
