3,610 research outputs found

    Precision Calculations for Future Colliders

    Get PDF
    I discuss the motivations for, and the status of, precision calculations for the Large Hadron Collider (LHC) and the planned International Linear Collider (ILC).Comment: latex, uses ws-ijmpe.cls, 19 pages, 9 figures, 1 table, based on a talk given at the symposium "50 Years of High Energy Physics at UB", to appear in International Journal of Modern Physics

    Ice sheets as a significant source of highly reactive nanoparticulate iron to the oceans

    No full text
    The Greenland and Antarctic Ice Sheets cover ~\n10% of global land surface, but are rarely considered as active components of the global iron cycle. The ocean waters around both ice sheets harbour highly productive coastal ecosystems, many of which are iron limited. Measurements of iron concentrations in subglacial runoff from a large Greenland Ice Sheet catchment reveal the potential for globally significant export of labile iron fractions to the near-coastal euphotic zone. We estimate that the flux of bioavailable iron associated with glacial runoff is 0.40–2.54?Tg per year in Greenland and 0.06–0.17?Tg per year in Antarctica. Iron fluxes are dominated by a highly reactive and potentially bioavailable nanoparticulate suspended sediment fraction, similar to that identified in Antarctic icebergs. Estimates of labile iron fluxes in meltwater are comparable with aeolian dust fluxes to the oceans surrounding Greenland and Antarctica, and are similarly expected to increase in a warming climate with enhanced melting

    Master integrals for massive two-loop Bhabha scattering in QED

    Full text link
    We present a set of scalar master integrals (MIs) needed for a complete treatment of massive two-loop corrections to Bhabha scattering in QED, including integrals with arbitrary fermionic loops. The status of analytical solutions for the MIs is reviewed and examples of some methods to solve MIs analytically are worked out in more detail. Analytical results for the pole terms in epsilon of so far unknown box MIs with five internal lines are given.Comment: 23 pages, 5 tables, 12 figures, references added, appendix B enlarge

    Physics at International Linear Collider (ILC)

    Full text link
    International Linear Collider (ILC) is an electron-positron collider with the initial center-of-mass energy of 500 GeV which is upgradable to about 1 TeV later on. Its goal is to study the physics at TeV scale with unprecedented high sensitivities. The main topics include precision measurements of the Higgs particle properties, studies of supersymmtric particles and the underlying theoretical structure if supersymmetry turns out to be realized in nature, probing alternative possibilities for the origin of mass, and the cosmological connections thereof. In many channels, Higgs and leptonic sector in particular, ILC is substantially more sensitive than LHC, and is complementary to LHC overall. In this short article, we will have a quick look at the capabilities of ILC.Comment: To appear in JPSJ Vol76 No1

    Physical weathering by glaciers enhances silicon mobilisation and isotopic fractionation

    Get PDF
    Glacial meltwaters export substantial quantities of dissolved and dissolvable amorphous silicon (DSi and ASi), providing an essential nutrient for downstream diatoms. Evidence suggests that glacially exported DSi is isotopically light compared to DSi in non-glaciated rivers. However, the isotopic fractionation mechanisms are not well constrained, indicating an important gap in our understanding of processes in the global Si cycle. We use rock crushing experiments to mimic subglacial physical erosion, to provide insight into subglacial isotope fractionation. Isotopically light DSi (δ30SiDSi) released following initial dissolution of freshly ground mineral surfaces (down to −2.12 ± 0.02 ‰) suggests mechanochemical reactions induce isotopic fractionation, explaining the low δ30SiDSi composition of subglacial runoff. ASi with a consistent isotopic composition is present in all mechanically weathered samples, but concentrations are elevated in samples that have undergone more intense physical grinding. These experiments illustrate the critical role of physical processes in driving isotopic fractionation and biogeochemical weathering in subglacial environments. Understanding perturbations in high latitude Si cycling under climatic change will likely depend on the response of mechanochemical weathering to increased glacial melt

    Potentially bioavailable iron delivery by iceberg-hosted sediments and atmospheric dust to the polar oceans

    Get PDF
    Iceberg-hosted sediments and atmospheric dust transport potentially bioavailable iron to the Arctic and Southern oceans as ferrihydrite. Ferrihydrite is nanoparticulate and more soluble, as well as potentially more bioavailable, than other iron (oxyhydr)oxide minerals (lepidocrocite, goethite, and hematite). A suite of more than 50 iceberghosted sediments contain a mean content of 0.076 wt% Fe as ferrihydrite, which produces iceberg-hosted Fe fluxes ranging from 0.7 to 5.5 and 3.2 to 25 Gmoles yr 1 to the Arctic and Southern oceans respectively. Atmospheric dust (with little or no combustion products) contains a mean ferrihydrite Fe content of 0.038 wt% (corresponding to a fractional solubility of 1 %) and delivers much smaller Fe fluxes (0.02–0.07 Gmoles yr 1 to the Arctic Ocean and 0.0– 0.02 Gmoles yr 1 to the Southern Ocean). New dust flux data show that most atmospheric dust is delivered to sea ice where exposure to melting/re-freezing cycles may enhance fractional solubility, and thus fluxes, by a factor of approximately 2.5. Improved estimates for these particulate sources require additional data for the iceberg losses during fjord transit, the sediment content of icebergs, and samples of atmospheric dust delivered to the polar regions

    MW and sin^2\theta_eff in Split SUSY: present and future expectations

    Full text link
    We analyse the precision electroweak observables MW and sin^2\theta_eff and their correlations in the recently proposed Split SUSY model. We compare the results with the Standard Model and Minimal Supersymmetric Standard Model predictions, and with present and future experimental accuracies. Present experimental accuracies in (MW, sin^2\theta_eff) do not allow constraints to be placed on the Split SUSY parameter space. We find that the shifts in (MW, sin^2\theta_eff) induced by Split SUSY can be larger than the anticipated accuracy of the GigaZ option of the International Linear Collider, and that the most sensitive observable is sin^2\theta_eff. These large shifts are possible also for large chargino masses in scenarios with small tan(\beta) =~ 1.Comment: LaTeX, 13 pages, 4 figures. Comments adde

    The Road Towards the ILC: Higgs, Top/QCD, Loops

    Full text link
    The International Linear e+e- Collider (ILC) could go into operation in the second half of the upcoming decade. Experimental analyses and theory calculations for the physics at the ILC are currently performed. We review recent progress, as presented at the LCWS06 in Bangalore, India, in the fields of Higgs boson physics and top/QCD. Also the area of loop calculations, necessary to achieve the required theory precision, is included.Comment: 7 pages, 1 figure. Plenary talk given at the LCWS06 March 2006, Bangalore, India. Top part slightly enlarged, references adde

    Biogeochemical and historical drivers of microbial community composition and structure in sediments from Mercer Subglacial Lake, West Antarctica

    Get PDF
    Ice streams that flow into Ross Ice Shelf are underlain by water-saturated sediments, a dynamic hydrological system, and subglacial lakes that intermittently discharge water downstream across grounding zones of West Antarctic Ice Sheet (WAIS). A 2.06 m composite sediment profile was recently recovered from Mercer Subglacial Lake, a 15 m deep water cavity beneath a 1087 m thick portion of the Mercer Ice Stream. We examined microbial abundances, used 16S rRNA gene amplicon sequencing to assess community structures, and characterized extracellular polymeric substances (EPS) associated with distinct lithologic units in the sediments. Bacterial and archaeal communities in the surficial sediments are more abundant and diverse, with significantly different compositions from those found deeper in the sediment column. The most abundant taxa are related to chemolithoautotrophs capable of oxidizing reduced nitrogen, sulfur, and iron compounds with oxygen, nitrate, or iron. Concentrations of dissolved methane and total organic carbon together with water content in the sediments are the strongest predictors of taxon and community composition. δ¹³C values for EPS (−25 to −30‰) are consistent with the primary source of carbon for biosynthesis originating from legacy marine organic matter. Comparison of communities to those in lake sediments under an adjacent ice stream (Whillans Subglacial Lake) and near its grounding zone provide seminal evidence for a subglacial metacommunity that is biogeochemically and evolutionarily linked through ice sheet dynamics and the transport of microbes, water, and sediments beneath WAIS

    Beam Spot Position Measurement at the LEP Collider

    Get PDF
    A precise knowledge of the beam spot position is required for many physics topics at LEP2. The movement of the beam spot is studied at LEP1 using beam orbit monitors close to the interaction points and compared with measurements from tracks produced in e+e- collisions. The beam orbit monitors are found to follow the beam spot position well, particularly when corrected for movements of nearby quadrupole magnets. Data from the LEP high energy run of November 1995 are also analysed, and projections made for the prospects at LEP2
    corecore