1,842 research outputs found
Weak Pion Production off the Nucleon
We develop a model for the weak pion production off the nucleon, which
besides the Delta pole mechanism (weak excitation of the
resonance and its subsequent decay into ), includes also some background
terms required by chiral symmetry. We re-fit the form factor to
the flux averaged ANL differential cross
section data, finding a substantially smaller contribution of the Delta pole
mechanism than traditionally assumed in the literature. Within this scheme, we
calculate several differential and integrated cross sections, including pion
angular distributions, induced by neutrinos and antineutrinos and driven both
by charged and neutral currents. In all cases we find that the background terms
produce quite significant effects and that they lead to an overall improved
description of the data, as compared to the case where only the Delta pole
mechanism is considered. We also show that the interference between the Delta
pole and the background terms produces parity-violating contributions to the
pion angular differential cross section, which are intimately linked to odd
correlations in the contraction between the leptonic and hadronic tensors.
However, these latter correlations do not imply a genuine violation of time
reversal invariance because of the existence of strong final state interaction
effects.Comment: Typos corrected; comments adde
Measuring patient perceptions about osteoporosis pharmacotherapy
Abstract
Background
Adherence to osteoporosis pharmacotherapy is poor, and linked with patient perceptions of the benefits of, and barriers to taking these treatments. To better understand the association between patient perceptions and osteoporosis pharmacotherapy, we generated thirteen items that may tap into patient perceptions about the benefits of, and barriers to osteoporosis treatment; and included these items as part of a standardized telephone interview of women aged 65â90 years (n = 871). The purpose of this paper is to report the psychometric evaluation of our scale.
Findings
Upon detailed analysis, six of the thirteen items were omitted: four redundant, one did not correlate well with any other item and one factorial complex. From the remaining seven items, two distinct unidimensional domains emerged (variance explained = 78%). Internal consistency of the 5-item osteoporosis drug treatment benefits domain was good (Cronbach's alpha = 0.88), and was supported by construct validity; women reporting a physician-diagnosis or taking osteoporosis pharmacotherapy had higher osteoporosis treatment benefit scores compared to those reporting no osteoporosis diagnosis or treatment respectively. Because only two items were identified as tapping into treatment barriers, we recommend they each be used as a separate item assessing potential barriers to adherence to osteoporosis pharmacotherapy, rather than combined into a single scale.
Conclusion
The 5-item osteoporosis drug treatment benefits scale may be useful to examine perceptions about the benefits of osteoporosis pharmacotherapy. Further research is needed to develop scales that adequately measure perceived barriers to osteoporosis pharmacotherapy
Parton energy loss limits and shadowing in Drell-Yan dimuon production
A precise measurement of the ratios of the Drell-Yan cross section per
nucleon for an 800 GeV/c proton beam incident on Be, Fe and W targets is
reported. The behavior of the Drell-Yan ratios at small target parton momentum
fraction is well described by an existing fit to the shadowing observed in
deep-inelastic scattering. The cross section ratios as a function of the
incident parton momentum fraction set tight limits on the energy loss of quarks
passing through a cold nucleus
dbar/ubar Asymmetry and the Origin of the Nucleon Sea
The Drell-Yan cross section ratios, , measured in
Fermilab E866, have led to the first determination of ,
, and the integral of for the
proton over the range . The E866 results are compared
with predictions based on parton distribution functions and various theoretical
models. The relationship between the E866 results and the NMC measurement of
the Gottfried integral is discussed. The agreement between the E866 results and
models employing virtual mesons indicates these non-perturbative processes play
an important role in the origin of the , asymmetry in the
nucleon sea.Comment: 5 pages, 3 figures, ReVTe
Flavor and Charge Symmetry in the Parton Distributions of the Nucleon
Recent calculations of charge symmetry violation(CSV) in the valence quark
distributions of the nucleon have revealed that the dominant symmetry breaking
contribution comes from the mass associated with the spectator quark
system.Assuming that the change in the spectator mass can be treated
perturbatively, we derive a model independent expression for the shift in the
parton distributions of the nucleon. This result is used to derive a relation
between the charge and flavor asymmetric contributions to the valence quark
distributions in the proton, and to calculate CSV contributions to the nucleon
sea. The CSV contribution to the Gottfried sum rule is also estimated, and
found to be small
Gluon distributions in nucleons and pions at a low resolution scale
In this paper we study the gluon distribution functions in nucleons and pions
at a low resolution scale. This is an important issue since parton
densities at low have always been taken as an external input which is
adjusted through DGLAP evolution to fit the experimental data at higher scales.
Here, in the framework of a model recently developed, it is shown that the
hypothetical cloud of {\it neutral} pions surrounding nucleons and pions
appears to be responsible for the characteristic valence-like gluon
distributions needed at the inital low scale. As an additional result, we get
the remarkable prediction that neutral and charged pions have different
intrinsic sea flavor contents.Comment: final version to appear in Phys. Rev. D. Discussion on several points
enlarge
Folding of a donorâacceptor polyrotaxane by using noncovalent bonding interactions
Mechanically interlocked compounds, such as bistable catenanes and bistable rotaxanes, have been used to bring about actuation in nanoelectromechanical systems (NEMS) and molecular electronic devices (MEDs). The elaboration of the structural features of such rotaxanes into macromolecular materials might allow the utilization of molecular motion to impact their bulk properties. We report here the synthesis and characterization of polymers that contain Ï electron-donating 1,5-dioxynaphthalene (DNP) units encircled by cyclobis(paraquat-p-phenylene) (CBPQT4+), a Ï electron-accepting tetracationic cyclophane, synthesized by using the copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC). The polyrotaxanes adopt a well defined âfoldedâ secondary structure by virtue of the judicious design of two DNP-containing monomers with different binding affinities for CBPQT4+. This efficient approach to the preparation of polyrotaxanes, taken alongside the initial investigations of their chemical properties, sets the stage for the preparation of a previously undescribed class of macromolecular architectures
- âŠ