8 research outputs found

    APPLICATION OF PLANT ESSENTIAL OILS FOR IMPROVING AIR QUALITY IN THE LECTURE-HALLS OF UNIVERSITIES

    Get PDF
    Bilyk Tetiana, Lukianenko Nataliia, Vityk Karina, Havryliuk Olesia. Application of plant essential oils for improving air quality in the lecture-halls of universities. Proceedings of the National Aviation University. 2018. N2(75). P 60–66.Purpose: The general goal of the article is to analyze air contamination of lecturer-halls by microorganisms and to investigate antimicrobial activity of plant essential oils for improvement of ecological state of indoor microflora. Methods: For determination of the total number of microorganisms and assessment of air microflora contamination, Sedimentation method (Koch’s Pour Plate method) was used. The colonies of microorganisms were calculated according to the V. Omelianskii rule. Statistical processing of data made on the Microsoft Office Exel (with adequacy 95%). Indicators of standard deviations were calculated by conventional procedures. The morphology of microorganisms was studied on microscope "Mikmed 2" (with zoom × 1500). The impact of plant essential oils on chosen strains of microorganisms (Staphylococcus aureus UCM B-904, Pseudomonas aeruginosa UCM В-907, Escherichia coli UCM B-906) was estimated with the help of disc-diffusion method. Results: The round, white, yellow with a matte or shiny surface and with a smooth edge of the colonies of microorganisms were identified during the investigation. By the morphological features, microorganisms were gram-negative bacilli or gram-positive cocci. It has been established that the efficiency of plant essential oils appears in small concentrations and during of its increasing it changes insignificantly. In the research of antimicrobial activity of essential oils with the help of disco-diffusion method, it has been determined that the essential oils of lavender and eucalyptus have antimicrobial activity against to all the strains investigated. Conclusions: It has been investigated that investigated essential oils (lavender, eucalyptus, and juniper) inhibit the microorganisms to increase in the concentrations 5-15 mcl/m3 and can be used as the effective method of air treatment. Based on the research, the essential oils of lavender and eucalyptus can be recommended to use after classes in the concentrations of 5 mcl/m3.Мета: Аналіз забруднення повітря мікроорганізмами в навчальних та дослідження антимікробної активності рослинних ефірних олій для покращення екологічного стану аудиторій. Методи дослідження: Для встановлення загальної кількості мікроорганізмів та оцінки забруднення повітря було використано Седиментаційний метод (чашковий метод Коха). Колонії мікроорганізмів підраховувалися за правилом В.Л. Омелянського. Статистичну обробку даних проводили за допомогою програмних пакетів Microsoft Office Excel з достовірністю 95%. Показники стандартних відхилень обчислювали за загальноприйнятими формулами. Морфологію клітин вивчали на мікроскопі «Мікмед-2» (збільшення ×1500). Вплив рослинних ефірних олій на обрані штами мікроорганізмів (Staphylococcus aureus УКМ Б-904, Pseudomonas aeruginosa УКМ Б-907, Escherichia coli УКМ Б-906) оцінювали за допомогою диско-дифузійного методу. Результати: Під час досліду були виділені круглі, білі, жовті з матовою або блискучою поверхнею та рівним краєм колонії мікроорганізмів. За морфологічними ознаками мікроорганізми виявилися грамнегативними паличками або грампозитивними коками. Було встановлено, що ефективність рослинних ефірних олій проявляється у малих концентраціях і змінюється не суттєво при її збільшені. При вивченні антимікробної активності ефірних олій диско-дифузійним методом визначено, що ефірні олії лаванди та евкаліпту мали антибактеріальну активністю по відношенні до всіх досліджуваних штамів. Висновки: Досліджено, що рослинні ефірні олії (ялівцева, лавандова, евкаевкаліп та їх композиція) зменшує кількість мікроорганізмів в повітрі навчальних аудиторій в концентраціях 5-15 мкм/м3 і можуть бути ефективним засобом оздоровлення мікрофлори повітря приміщень. За результатами досліджень можна рекомендувати використовувати рослинні ефірні олії лаванди та евалкапту в концентраціях 5 мкл/м3 повітря після занять.Цель: Анализ загрязнения воздуха микроорганизмами в учебных заведениях и исследование антимикробной активности растительных эфирных масел для улучшения экологического состояния аудиторий. Методы исследования: Для установления общего количества микроорганизмов и оценки загрязнения воздуха было использовано Седиментационный метод (чашечный метод Коха). Колонии микроорганизмов подсчитывали по правилу В.Л. Омелянского. Статистическую обработку данных проводили с помощью программных пакетов Microsoft Office Excel с достоверностью 95%. Показатели стандартных отклонений рассчитывали по общепринятым формулам. Морфологию клеток изучали на микроскопе «Микмед-2» (увеличение ×1500). Влияние растительных эфирных масел на выбранные штампы микроорганизмов (Staphylococcus aureus УКМ Б-904, Pseudomonas aeruginosa УКМ Б-907, Escherichia coli УКМ Б-906) оценивали с помощью диско-диффузного метода. Результаты: Во время исследования были выделены круглые, белые, желтые с матовой или блестящей поверхностью и ровным краем колонии микроорганизмов. За морфологическими признаками микроорганизмы оказались грамнегативными палочками и грампозитивными коками. Было установлено, что эффективность растительных эфирных масел проявляется в малых концентрациях и меняется не существенно при её изменении. При изучении антимикробной активности эфирных масел диско-диффузным методом определено, что эфирные масла лаванды и эвкалипта имели антибактериальную активность по отношению ко всем исследуемым штампам. Выводы: Исследовано, что растительные эфирные масла (можжевельника, лаванды, эвкалипта и их композиции) уменьшает количество микроорганизмов в воздухе учебных аудиторий в концентрациях 5-15 мкм/м3 и могут быть эффективным средством оздоровления микрофлоры воздуха помещений. За результатами исследований можно рекомендовать использовать растительные эфирные масла лаванды и эвкалипта в концентрациях 5 мкл/м3 воздуха после занятий

    Detoxification of Copper and Chromium Via Dark Hydrogen Fermentation of Potato Waste by Clostridium butyricum Strain 92

    Get PDF
    The accumulation of various types of waste containing both organic and inorganic metal-containing compounds is extremely hazardous for living organisms. The possibility of polymer degradation, biohydrogen synthesis, and metal detoxification via the dark fermentation of model potato waste was investigated. For this purpose, the strict anaerobic strain was isolated and identified as Clostridium butyricum. The high efficiency of dark hydrogen fermentation of potatoes with yield of hydrogen in 85.8 ± 15.3 L kg−1 VSpotato was observed. The copperand chromium salts solutions were added to the culture fluid to obtain the concentrations of 50, 100, and 200 mg L−1 Cu(II) and Cr(VI) in the active phase of growth (19 h of cultivation). Metals at a concentration of 200 mg L−1 inhibited the fermentation process the most. The hydrogen yield decreased in 7.2 and 3.6 times to 11.9 ± 2.1 and 23.8 ± 5.6 L kg−1 VSpotato in the presence of 200 mg L−1 Cu(II) and Cr(VI), respectively. The efficiencies of the chromium bioremoval in all variants of the experiment were 100%, and those of copper bioremoval were about 90%. A pure culture of strict anaerobes Clostridium butyricum strain 92 was used for the first time for the detoxification of metals. The presented results confirmed the possibility of this promising strain application for industrial H2 production and the bioremediation of contaminated sites

    Increase in efficiency of hydrogen production by optimization of food waste fermentation parameters

    Get PDF
    The aim of the work was to optimize the ratio of weight of solid (food waste) and liquid (water) phases in order to ensure high efficiency of molecular hydrogen synthesis and degradation of multi-component food waste. Assessment of the efficiency of fermentation process was carried out using colorimetric and potentiometric methods for pH and redox potential measuring, volumetric and chromatographic methods for volume and composition of gas investigation, and mathematical calculations for fermentation parameters determination. The dynamics of hydrogen fermentation of waste in the horizontal reactor using different ratios of solid (food waste) and liquid (water) phases was investigated. The optimization of the ratio of solid and liquid phases was shown to lead to the increase in efficiency of molecular hydrogen synthesis and destruction of waste particles. The ratio of solid and liquid phases 1:3 was determined to be optimal for the effective synthesis of hydrogen as well as for maximum waste decomposition. It provided effective hydrogen fermentation of multi-component food waste and allowed to rationally use material and technical resources. Obtained results are promising for further development of efficient industrial biotechnologies for waste destruction with the simultaneous synthesis of environmentally friendly energy carrier, i.e. molecular hydrogen

    Anaerobic Degradation of the Invasive Weed <i>Solidago canadensis</i> L. (<i>goldenrod</i>) and Copper Immobilization by a Community of Sulfate-Reducing and Methane-Producing Bacteria

    No full text
    The weed Solidago canadensis L. poses a global threat to the environment as it spreads uncontrollably on roadsides, in forests, fields, meadows, and farmland. Goldenrod emits toxic substances that suppress other plants on the site, displacing wild ones. Thus, goldenrod conquers huge areas very quickly. The use of herbicides and mechanical methods does not solve the problem of the spontaneous spread of goldenrod. On the other hand, many scientists consider goldenrod as a valuable source of biologically active substances: flavonoids, phenolic compounds, vitamins, etc. In this study, we consider Solidago plants as a promising, free (cheap), and renewable substrate for the production of methane gas. The goal of the study was to identify the main patterns of degradation of the Solidago canadensis L. plant by methane-producing and sulfate-reducing bacteria with methane gas production and simultaneous detoxification of toxic copper. The composition of the gas phase was monitored by gas chromatography. The pH and redox potential parameters were determined potentiometrically; metal concentrations were measured by photometry. The concentration of flavonoids, sugars and phenolic compounds in plant biomass was determined according to well-known protocols. As a result of the study, high efficiencies of methane degradation in the Solidago plant and copper detoxification were obtained. Methane yield has reached the value of 68.2 L kg−1 TS of Solidago canadensis L. biomass. The degradation coefficient (Kd) was also high at 21.4. The Cu(II) was effectively immobilized by methanogens and sulfate reducers during the goldenrod degradation at the initial concentrations of 500 mg L−1. Thus, a new method of beneficial application of invasive plants was presented. The result confirms the possibility of using methanogenic microorganisms to produce methane gas from invasive weeds and detoxification of toxic metals

    Increase in efficiency of hydrogen production by optimization of food waste fermentation parameters

    Get PDF
    The aim of the work was to optimize the ratio of weight of solid (food waste) and liquid (water) phases in order to ensure high efficiency of molecular hydrogen synthesis and degradation of multi-component food waste. Assessment of the efficiency of fermentation process was carried out using colorimetric and potentiometric methods for pH and redox potential measuring, volumetric and chromatographic methods for volume and composition of gas investigation, and mathematical calculations for fermentation parameters determination. The dynamics of hydrogen fermentation of waste in the horizontal reactor using different ratios of solid (food waste) and liquid (water) phases was investigated. The optimization of the ratio of solid and liquid phases was shown to lead to the increase in efficiency of molecular hydrogen synthesis and destruction of waste particles. The ratio of solid and liquid phases 1:3 was determined to be optimal for the effective synthesis of hydrogen as well as for maximum waste decomposition. It provided effective hydrogen fermentation of multi-component food waste and allowed to rationally use material and technical resources. Obtained results are promising for further development of efficient industrial biotechnologies for waste destruction with the simultaneous synthesis of environmentally friendly energy carrier, i.e. molecular hydrogen

    A Noxious Weed <i>Ambrosia artemisiifolia</i> L. (Ragweed) as Sustainable Feedstock for Methane Production and Metals Immobilization

    No full text
    Plants of the Ambrosia genus are invasive and cause many ecological problems, including the oppression of the growth of agricultural crops and native plants, land depletion, and the production of strong allergens. The use of weeds as a sustainable feedstock for biogas production, either methane or hydrogen, is a promising way to fulfill the energy needs of the current generation, eliminate the depletion of non-renewable carbon resources, and preserve the ecosystem degradation caused by invasive species impacts. A diversified microbial community was used as inoculum and Ambrosia artemisiifolia L. biomass as a substrate for anaerobic degradation and methane production. In this regard, the development of biotechnological approaches to ragweed degradation will promote the integration of new renewable energy systems. Herein, we have shown the high effectiveness of combining the processes of anaerobic degradation of plant biomass for methane production and detoxification of meal-containing model sewage by a diversified microbial community. Thus, the maximum methane yield was 56.0 L kg−1 TS. The presence of 500 mg L−1 Cu(II) slightly inhibited methane synthesis, and the methane yield was 38.4 L kg−1 TS. In contrast to a diversified microbial community, the natural microbiome of ragweed almost did not synthesize methane and did not degrade plant biomass (Kd = 2.3). Methanogens effectively immobilized Cr(IV), Cu(II), and Fe(III) during ragweed fermentation at initial concentrations of 100–200 mg L−1. The obtained results showed the high effectiveness of applying a diversified microbial community in a sewage treatment plant for the degradation of a noxious plant, Ambrosia artemisiifolia L

    Spatial Succession for Degradation of Solid Multicomponent Food Waste and Purification of Toxic Leachate with the Obtaining of Biohydrogen and Biomethane

    No full text
    A huge amount of organic waste is generated annually around the globe. The main sources of solid and liquid organic waste are municipalities and canning and food industries. Most of it is disposed of in an environmentally unfriendly way since none of the modern recycling technologies can cope with such immense volumes of waste. Microbiological and biotechnological approaches are extremely promising for solving this environmental problem. Moreover, organic waste can serve as the substrate to obtain alternative energy, such as biohydrogen (H2) and biomethane (CH4). This work aimed to design and test new technology for the degradation of food waste, coupled with biohydrogen and biomethane production, as well as liquid organic leachate purification. The effective treatment of waste was achieved due to the application of the specific granular microbial preparation. Microbiological and physicochemical methods were used to measure the fermentation parameters. As a result, a four-module direct flow installation efficiently couples spatial succession of anaerobic and aerobic bacteria with other micro- and macroorganisms to simultaneously recycle organic waste, remediate the resulting leachate, and generate biogas

    Spatial Succession for Degradation of Solid Multicomponent Food Waste and Purification of Toxic Leachate with the Obtaining of Biohydrogen and Biomethane

    No full text
    A huge amount of organic waste is generated annually around the globe. The main sources of solid and liquid organic waste are municipalities and canning and food industries. Most of it is disposed of in an environmentally unfriendly way since none of the modern recycling technologies can cope with such immense volumes of waste. Microbiological and biotechnological approaches are extremely promising for solving this environmental problem. Moreover, organic waste can serve as the substrate to obtain alternative energy, such as biohydrogen (H2) and biomethane (CH4). This work aimed to design and test new technology for the degradation of food waste, coupled with biohydrogen and biomethane production, as well as liquid organic leachate purification. The effective treatment of waste was achieved due to the application of the specific granular microbial preparation. Microbiological and physicochemical methods were used to measure the fermentation parameters. As a result, a four-module direct flow installation efficiently couples spatial succession of anaerobic and aerobic bacteria with other micro- and macroorganisms to simultaneously recycle organic waste, remediate the resulting leachate, and generate biogas
    corecore