188 research outputs found

    Investigation of conventional and Super-X divertor configurations of MAST Upgrade using SOLPS

    Full text link
    One of the first studies of MAST Upgrade divertor configurations with SOLPS5.0 are presented. We focus on understanding main prospects associated with the novel geometry of the Super-X divertor (SXD). This includes a discussion of the effect of magnetic flux expansion and volumetric power losses on the reduction of target power loads, the effect of divertor geometry on the divertor closure and distribution of neutral species and radiation in the divertor, the role of the connection length in broadening the target wetted area. A comparison in conditions typical for MAST inter-ELM H-mode plasmas confirms improved performance of the Super-X topology resulting in significantly better divertor closure with respect to neutrals (the atomic flux from the target increased by a factor of 6, but the atomic flux from the divertor to the upper SOL reduced by a factor of 2), increased radiation volume and increased total power loss (a factor of 2) and a reduction of target power loads through both magnetic flux expansion and larger volumetric power loss in the divertor (a factor of 5-10 in attached plasmas). The reduction of the target power load by SXD further increases with collisionality (high density or detached regimes) thanks to larger importance of volumetric power losses. It is found that a cold divertor plasma leads to stronger parallel temperature gradients in the SOL which drive more parallel heat flux, meaning that the effectiveness of perpendicular transport in spreading the power at the target can be reduced, and this needs to be taken into account in any optimisation.Comment: 32 pages, 23 figures. This is an author-created, un-copyedited version of an article accepted for publication in PPCF. IOP Publishing Ltd and IAEA are not responsible for any errors or omissions in this version of the manuscript or any version derived from i

    Benchmarking of a 1D Scrape-off layer code SOLF1D with SOLPS and its use in modelling long-legged divertors

    Full text link
    A 1D code modelling SOL transport parallel to the magnetic field (SOLF1D) is benchmarked with 2D simulations of MAST-U SOL performed via the SOLPS code for two different collisionalities. Based on this comparison, SOLF1D is then used to model the effects of divertor leg stretching in 1D, in support of the planned Super-X divertor on MAST. The aim is to separate magnetic flux expansion from volumetric power losses due to recycling neutrals by stretching the divertor leg either vertically or radially.Comment: 31 pages, 17 figures. This is an author-created, un-copyedited version of an article accepted for publication in Plasma Physics and Controlled Fusion. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from i

    Description of Transport Tunnel in Haloalkane Dehalogenase Variant LinB D147C+L177C from Sphingobium japonicum

    Get PDF
    The activity of enzymes with active sites buried inside their protein core highly depends on the efficient transport of substrates and products between the active site and the bulk solvent. The engineering of access tunnels in order to increase or decrease catalytic activity and specificity in a rational way is a challenging task. Here, we describe a combined experimental and computational approach to characterize the structural basis of altered activity in the haloalkane dehalogenase LinB D147C+L177C variant. While the overall protein fold is similar to the wild type enzyme and the other LinB variants, the access tunnels have been altered by introduced cysteines that were expected to form a disulfide bond. Surprisingly, the mutations have allowed several conformations of the amino acid chain in their vicinity, interfering with the structural analysis of the mutant by X-ray crystallography. The duration required for the growing of protein crystals changed from days to 1.5 years by introducing the substitutions. The haloalkane dehalogenase LinB D147C+L177C variant crystal structure was solved to 1.15 angstrom resolution, characterized and deposited to Protein Data Bank under PDB ID 6s06

    Challenge of conducting a placebo-controlled randomized efficacy study for influenza vaccine in a season with low attack rate and a mismatched vaccine B strain: a concrete example

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Our aim was to determine the efficacy of a trivalent inactivated split virus influenza vaccine (TIV) against culture-confirmed influenza A and/or B in adults 18 to 64 years of age during the 2005/2006 season in the Czech Republic.</p> <p>Methods</p> <p>6203 subjects were randomized to receive TIV (N = 4137) or placebo (N = 2066). The sample size was based on an assumed attack rate of 4% which provided 90% power to reject the hypothesis that vaccine efficacy (VE) was β‰₯ 45%. Cases of influenza like illness (defined as fever (oral temperature β‰₯37.8Β°C) plus cough and/or sore throat) were identified both by active (biweekly phone contact) and passive (self reporting) surveillance and nasal and throat swabs were collected from subjects for viral culture.</p> <p>Results</p> <p>TIV was well tolerated and induced a good immune response. The 2005/2006 influenza season was exceptionally mild in the study area, as it was throughout Europe, and only 46 culture-confirmed cases were found in the study cohort (10 influenza A and 36 influenza B). Furthermore among the B isolates, 35 were identified as B/Hong Kong 330/2001-like (B/Victoria/2/87 lineage) which is antigenically unrelated to the vaccine B strain (B/Yamagata/16/88 lineage). The attack rate in the vaccine group (0.7%) was not statistically significantly different from the attack rate in the placebo group (0.9%).</p> <p>Conclusion</p> <p>Due to the atypical nature of the influenza season during this study we were unable to assess TIV efficacy. This experience illustrates the challenge of conducting a prospective influenza vaccine efficacy trial during a single season when influenza attack rates and drift in circulating strains or B virus lineage match can be difficult to estimate in advance.</p> <p>Trial Registration</p> <p>Clinical trial registery: NCT00197223.</p

    The potential risks and impact of the start of the 2015–2016 influenza season in the WHO European Region: a rapid risk assessment

    Get PDF
    Background: Countries in the World Health Organization (WHO) European Region are reporting more severe influenza activity in the 2015–2016 season compared to previous seasons. Objectives: To conduct a rapid risk assessment to provide interim information on the severity of the current influenza season. Methods: Using the WHO manual for rapid risk assessment of acute public health events and surveillance data available from Flu News Europe, an assessment of the current influenza season from 28 September 2015 (week 40/2015) up to 31 January 2016 (week 04/2016) was made compared with the four previous seasons. Results: The current influenza season started around week 51/2015 with higher influenza activity reported in Eastern Europe compared to Western Europe. There is a strong predominance of influenza A(H1N1)pdm09 compared to previous seasons, but the virus is antigenically similar to the strain included in the seasonal influenza vaccine. Compared to the 2014/2015 season, there was a rapid increase in the number of severe cases in Eastern European countries with the majority of such cases occurring among adults aged < 65Β years. Conclusions: The current influenza season is characterized by an early start in Eastern European countries, with indications of a more severe season. Currently circulating influenza A(H1N1)pdm09 viruses are antigenically similar to those included in the seasonal influenza vaccine, and the vaccine is expected to be effective. Authorities should provide information to the public and health providers about the current influenza season, recommendations for the treatment of severe disease and effective public health measures to prevent influenza transmission

    Mitochondrial ATP synthase: architecture, function and pathology

    Get PDF
    Human mitochondrial (mt) ATP synthase, or complex V consists of two functional domains: F1, situated in the mitochondrial matrix, and Fo, located in the inner mitochondrial membrane. Complex V uses the energy created by the proton electrochemical gradient to phosphorylate ADP to ATP. This review covers the architecture, function and assembly of complex V. The role of complex V di-and oligomerization and its relation with mitochondrial morphology is discussed. Finally, pathology related to complex V deficiency and current therapeutic strategies are highlighted. Despite the huge progress in this research field over the past decades, questions remain to be answered regarding the structure of subunits, the function of the rotary nanomotor at a molecular level, and the human complex V assembly process. The elucidation of more nuclear genetic defects will guide physio(patho)logical studies, paving the way for future therapeutic interventions
    • …
    corecore