11 research outputs found

    Optometric Measurements Predict Performance but Not Comfort on a Virtual Object Placement Task With a Stereoscopic 3D Display

    Get PDF
    Twelve participants were tested on a simple virtual object precision placement task while viewing a stereoscopic 3D (S3D) display. Inclusion criteria included uncorrected or best corrected vision of 20/20 or better in each eye and stereopsis of at least 40 arc sec using the Titmus stereo test. Additionally, binocular function was assessed, including measurements of distant and near phoria (horizontal and vertical) and distant and near horizontal fusion ranges using standard optometric clinical techniques. Before each of six 30 minute experimental sessions, measurements of phoria and fusion ranges were repeated using a Keystone View Telebinocular and an S3D display, respectively. All participants completed experimental sessions in which the task required the precision placement of a virtual object in depth at the same location as a target object. Subjective discomfort was assessed using the Simulator Sickness Questionnaire (SSQ). Individual placement accuracy in S3D trials was significantly correlated with several of the binocular screening outcomes: viewers with larger convergent fusion ranges (measured at near distance), larger total fusion ranges (convergent plus divergent ranges, measured at near distance), and/or lower (better) stereoscopic acuity thresholds were more accurate on the placement task. No screening measures were predictive of subjective discomfort, perhaps due to the low levels of discomfort induced

    Display Size and Distractor Complexity Effects on Visual Search

    No full text
    The proliferation of higher quality connected sensors is consistently increasing the amount of information available to operators, increasing the complexity of displayed information. Coupling this increase in information with larger, higher addressability displays may lead to increasingly complex visual search paradigms. The current research explored the effect of both display size and distractor symbol complexity on visual search efficiency across three different symbol set sizes. Overall, the results indicate a reduction in search efficiency as a function of both increased display size and distractor complexity, even for the high target densities employed within this study. Further, these variables can interact in target present conditions to influence search times

    Visual Search Performance With 3-D Auditory Cues: Effects of Motion, Target Location, and Practice

    No full text
    Objectives: We evaluate visual search performance in both static (nonmoving) and dynamic (moving) search environments with and without spatial (3-D) auditory cues to target location. Additionally, the effects of target trajectory, target location, and practice are assessed. Background: Previous research on aurally aided visual search has shown a significant reduction in response times when 3-D auditory cues are displayed, relative to unaided search. However, the vast majority of this research has examined only searches for static targets in static visual environments. The present experiment was conducted to examine the effect of dynamic stimuli upon aurally aided visual search performance. Method: The 8 participants conducted repeated searches for a single visual target hidden among 15 distracting stimuli. The four main conditions of the experiment consisted of the four possible combinations of 3-D auditory cues (present or absent) and search environment (static or dynamic). Results: The auditory cues were comparably effective at reducing search times in dynamic environments (—25%) as in static environments (—22%). Audio cues helped all participants. The cues were most beneficial when the target appeared at large eccentricities and on the horizontal plane. After a brief initial exposure to 3-D audio, no training or practice effects with 3-D audio were found. Conclusion: We conclude that 3-D audio is as beneficial in environments comprising moving stimuli as in those comprising static stimuli. Application: Operators in dynamic environments, such as aircraft cockpits, ground vehicles, and command-and-control centers, could benefit greatly from 3-D auditory technology when searching their environments for visual targets or other time-critical information

    Systems Factorial Technology with R

    No full text
    Systems Factorial Technology (SFT) comprises a set of powerful nonparametric models and measures, together with a theory-driven experiment methodology termed the Double Factorial Paradigm (DFP), for assessing the cognitive information processing mechanisms supporting the processing of multiple sources of information in a given task. We provide an overview of the model-based measures of SFT together with a tutorial on designing a DFP experiment to take advantage of all SFT measures in a single experiment. Illustrative examples are given to highlight the breadth of applicability of these techniques across psychology. We further introduce and demonstrate a new package for performing SFT analyses using R for Statistical Computing

    Clinically Normal Stereopsis Does Not Ensure a Performance Benefit From Stereoscopic 3D Depth Cues

    No full text
    To investigate the effect of manipulating disparity on task performance and viewing comfort, twelve participants were tested on a virtual object precision placement task while viewing a stereoscopic 3D (S3D) display. All participants had normal or corrected-to-normal visual acuity, passed the Titmus stereovision clinical test, and demonstrated normal binocular function, including phorias and binocular fusion ranges. Each participant completed six experimental sessions with different maximum binocular disparity limits. The results for ten of the twelve participants were generally as expected, demonstrating a large performance advantage when S3D cues were provided. The sessions with the larger disparity limits typically resulted in the best performance, and the sessions with no S3D cues the poorest performance. However, one participant demonstrated poorer performance in sessions with smaller disparity limits but improved performance in sessions with the larger disparity limits. Another participant’s performance declined whenever any S3D cues were provided. Follow-up testing suggested that the phenomenon of pseudo-stereoanomaly may account for one viewer’s atypical performance, while the phenomenon of stereoanomaly might account for the other. Overall, the results demonstrate that a subset of viewers with clinically normal binocular and stereoscopic vision may have difficulty performing depth-related tasks on S3D displays. The possibility of the vergence–accommodation conflict contributing to individual performance differences is also discussed

    Binocular Fusion Ranges and Stereoacuity Predict Positional and Rotational Spatial Task Performance on a Stereoscopic 3D Display

    No full text
    In this work, we tested 12 participants on a virtual object precision placement task while viewing a stereoscopic 3D (S3D) display. Optometric measures of binocular function were obtained, including measurements of distant and near phorias (horizontal and vertical) and distant and near horizontal fusion ranges, using standard clinical techniques. Before each of six 30-min experimental sessions, measurements of phoria and fusion ranges were repeated. All participants completed experimental sessions in which the task required precise positional and rotational alignment of a virtual object in depth, at the same location and orientation as a stationary target object. The object was controlled by participants\u27 spatial manipulation of a wireless 6 degree-of-freedom (DOF) tangible user interface utilizing magnetic spatial tracking. Subjective discomfort was assessed using the Simulator Sickness Questionnaire (SSQ). Individual placement precision in S3D trials was significantly correlated with several of the binocular measures: viewers with larger convergent fusion ranges, larger divergent fusion ranges, larger total fusion ranges, or lower (better) stereoscopic acuity thresholds were more accurate at the task. None of the optometric measures were predictive of individual subjective discomfort, although a combined analysis with a similar previous experiment suggested that a personal history with motion sickness was related to discomfort levels from S3D viewing. The results confirm and extend previous research, suggesting that several key optometric measurements are predictive of complex manual spatial task performance on an S3D display system

    Promising Practices in Long-Term Residential Care: Where Do Physicians Fit In (or Don’t They)?

    No full text
    corecore