201 research outputs found

    Optical Properties& Energy Transfer Dynamics of Atmospheric Species

    Get PDF
    Our research group is interested in how light interacts with small molecules and particulate matter that are important to atmospheric chemistry and climate change. An active project currently being performed in the James Madison University Undergraduate Laser Laboratory involves a detailed mapping of energy transfer rates from excited or metastable states of atomic or molecular species. This talk describes a specific example study with potential relevance to the JLAMP VUV/Soft X-ray User Facility that would investigate relaxation dynamics of metastable Krypton atoms using two-photon photoacoustic spectroscopy at 819 nm and 124 nm. A study like this would provide useful reference data to support future development of sensitive trace analyzers for noble gas isotopes

    Laboratory measurements and theoretical calculations of O_2 A band electric quadrupole transitions

    Get PDF
    Frequency-stabilized cavity ring-down spectroscopy was utilized to measure electric quadrupole transitions within the ^(16)O_2 A band, b^1Σ^+_g ← X^3Σ^-_g(0,0). We report quantitative measurements (relative uncertainties in intensity measurements from 4.4% to 11%) of nine ultraweak transitions in the ^NO, ^PO, ^RS, and ^TS branches with line intensities ranging from 3×10^(−30) to 2×10^(−29) cm molec.^(−1). A thorough discussion of relevant noise sources and uncertainties in this experiment and other cw-cavity ring-down spectrometers is given. For short-term averaging (t<100 s), we estimate a noise-equivalent absorption of 2.5×10^(−10) cm^(−1) Hz^(−1/2). The detection limit was reduced further by co-adding up to 100 spectra to yield a minimum detectable absorption coefficient equal to 1.8×10^(−11) cm^(−1), corresponding to a line intensity of ~2.5×10^(−31) cm molec.^(−1). We discuss calculations of electric quadrupole line positions based on a simultaneous fit of the ground and upper electronic state energies which have uncertainties <3 MHz, and we present calculations of electric quadrupole matrix elements and line intensities. The electric quadrupole line intensity calculations and measurements agreed on average to 5%, which is comparable to our average experimental uncertainty. The calculated electric quadrupole band intensity was 1.8(1)×10^(−27) cm molec.−1 which is equal to only ~8×10^(−6) of the magnetic dipole band intensity

    Developing Controlled Conductive Boundaries for JWST Cryogenic Testing

    Get PDF
    In 2017, the James Webb Space Telescope (JWST) underwent functional testing and optical metrology verification of the combined Optical Telescope Element and Integrated Science Instrument Module (OTIS) under cryogenic vacuum conditions in Chamber A at the Johnson Space Center. Maintaining flight-like thermal boundary conditions was a critical requirement for optical testing and required unique and challenging Ground Support Equipment (GSE) design solutions. Two such GSE systems, the Integrated Science Instrument Module (ISIM) Precool Straps and the Hardpoint Struts were direct conduction interfaces to the flight hardware. Hardware safety during cooldown required detailed design of their conductivity, and thermal balance testing required "zero-Q" (0-Q) heater implementation to bring the heat flow to zero, thereby cutting off these non-flight conductive links after operating temperatures were achieved. This paper describes the design considerations and approach implemented to achieve the required flight hardware cool down and return to ambient conditions, ensure flight hardware safety, and minimize the non-flight-like heat flows to or from the observatory during cryo-stable testing

    Experimental Line Parameters of the b^(1)Σ^(+)_g ← X^(3)Σ^(-)_g Band of Oxygen Isotopologues at 760 nm Using Frequency-Stabilized Cavity Ring-Down Spectroscopy

    Get PDF
    Positions, intensities, self-broadened widths, and collisional narrowing coefficients of the oxygen isotopologues ^(16)O^(18)O, ^(16)O^(17)O, ^(17)O^(18)O, and ^(18)O^(18)O have been measured for the b^(1)Σg + ← X^(3)Σg − (0,0) band using frequency-stabilized cavity ring-down spectroscopy. Line positions of 156 P-branch transitions were referenced against the hyperfine components of the ^(39)K D_1 (4s ^(2)S_(1/2) → 4p ^(2)P_(1/2)) and D_2 (4s ^(2)S_(1/2) → 4p ^(2)P_(3/2)) transitions, yielding precisions of ~0.00005 cm^(−1) and absolute accuracies of 0.00030 cm^(−1) or better. New excited b^(1)Σg + state molecular constants are reported for all four isotopologues. The measured line intensities of the ^(16)O^(18)O isotopologue are within 2% of the values currently assumed in molecular databases. However, the line intensities of the ^(16)O^(17)O isotopologue show a systematic, J-dependent offset between our results and the databases. Self-broadening half-widths for the various isotopologues are internally consistent to within 2%. This is the first comprehensive study of the line intensities and shapes for the ^(17)O^(18)O or ^(18)O_2 isotopologues of the b^(1)Σg + ← X^(3)Σg − (0,0) band of O_2. The ^(16)O_2, ^(16)O^(18)O, and ^(16)O^(17)O line parameters for the oxygen A-band have been extensively revised in the HITRAN 2008 database using results from the present study

    Optical-Depth Scaling of Light Scattering From a Dense and Cold Atomic \u3csup\u3e87\u3c/sup\u3eRb Gas

    Get PDF
    We report investigation of near-resonance light scattering from a cold and dense atomic gas of 87Rb atoms. Measurements are made for probe frequencies tuned near the F=2→ F\u27=3 nearly closed hyperfine transition, with particular attention paid to the dependence of the scattered light intensity on detuning from resonance, the number of atoms in the sample, and atomic sample size. We find that, over a wide range of experimental variables, the optical depth of the atomic sample serves as an effective single scaling parameter which describes well all the experimental data
    corecore