387 research outputs found

    Differential reflection spectroscopy on InAs/GaAs quantum dots

    Get PDF
    In this report, we present the derivation of the differential reflection spectrum as has been reported in \emph{Phys. Rev. B} \textbf{72}, 195301 (2005)

    Theory of Resonant Inelastic X-ray Scattering by Collective Magnetic Excitations

    Full text link
    I present a tractable theory for the Resonant Inelastic X-ray Scattering (RIXS) spectral function of magnons. The low-energy transition operator is written as a product of local spin operators times fundamental x-ray absorption spectra. This leads to simple selection rules for the magnetic cross section. The scattering cross section linear (quadratic) in spin operators is proportional to the magnetic circular (linear) dichroic absorption. RIXS is a novel tool to measure magnetic quasi particles (magnons) and the incoherent spectral weight, as well as multiple magnons up to very high energy losses, in small samples, thin films and multilayers, complementary to Neutron scattering

    Exploring small energy scales with x-ray absorption and dichroism

    Full text link
    Soft x-ray linear and circular dichroism (XLD, XMCD) experiments at the Ce M4,5_{4,5} edges are being used to determine the energy scales characterizing the Ce 4f4f degrees of freedom in the ultrathin ordered surface intermetallic CeAgx_x/Ag(111). We find that all relevant interactions, i. e. Kondo scattering, crystal field splitting and magnetic exchange coupling occur on small scales. Our study demonstrates the usefulness of combining x-ray absorption experiments probing linear and circular dichroism owing to their strong sensitivity for anisotropies in both charge distribution and paramagnetic response, respectively.Comment: 5 pages, 4 figure

    Symmetry analysis of magneto-optical effects: The case of x-ray diffraction and x-ray absorption at the transition metal L23 edge

    Get PDF
    A general symmetry analysis of the optical conductivity or scattering tensor is used to rewrite the conductivity tensor as a sum of fundamental spectra multiplied by simple functions depending on the local magnetization direction. Using this formalism, we present several numerical examples at the transition metal L23 edge. From these numerical calculations we can conclude that large deviations from the magneto-optical effects in spherical symmetry are found. These findings are in particular important for resonant x-ray diffraction experiments where the polarization dependence and azimuthal dependence of the scattered Bragg intensity is used to determine the local ordered magnetization direction

    Effective Operator for dddd Transitions in Nonresonant Inelastic X-ray Scattering

    Full text link
    Recent experiments by Larson et al. demonstrate the feasibility of measuring local dddd excitations using nonresonant inelastic X-ray scattering (IXS). We establish a general framework for the interpretation where the dddd transitions created in the scattering process are expressed in effective one-particle operators that follow a simple selection rule. The different operators can be selectively probed by employing their different dependence on the direction and magnitude of the transferred momentum. We use the operators to explain the presence of nodal directions and the nonresonant IXS in specific directions and planes. We demonstrate how nonresonant IXS can be used to extract valuable ground state information for orbiton excitations in manganite
    • …
    corecore