23 research outputs found

    Application of at-line two-dimensional liquid chromatography–mass spectrometry for identification of small hydrophilic angiotensin I-inhibiting peptides in milk hydrolysates

    Get PDF
    A two-dimensional chromatographic method with mass spectrometric detection has been developed for identification of small, hydrophilic angiotensin I-inhibiting peptides in enzymatically hydrolysed milk proteins. The method involves the further separation of the poorly retained hydrophilic fraction from a standard C18 reversed-phase column on a hydrophilic interaction liquid chromatography (HILIC) column. The latter column is specifically designed for the separation of hydrophilic compounds. Narrow fractions collected from the HILIC column were analysed for their angiotensin I-converting enzyme (ACE) inhibiting potential in an at-line assay. Fractions showing significant inhibition of ACE were analysed by LC–MS for structure elucidation. With this method the main peptides responsible for ACE-inhibition in the hydrophilic part of a milk hydrolysate could be determined. The ACE-inhibiting peptides RP, AP, VK, EK, and EW explained more than 85% of ACE-inhibition by the hydrophilic fraction

    The structure of the lantibiotic lacticin 481 produced by Lactococcus lactis:location of the thioether bridges

    Get PDF
    AbstractThe lantibiotic lacticin 481 is a bacteriocin produced by Lactococcus lactis ssp. lactis. This polypeptide contains 27 amino acids, including the unusual residues dehydrobutyrine and the thioether-bridging lanthionine and 3-methyllanthionine. Lacticin 481 belongs to a structurally distinct group of lantibiotics, which also include streptococcin A-FF22, salivaricin A and variacin. Here we report the first complete structure of this type of lantibiotic. The exact location of the thioether bridges in lacticin 481 was determined by a combination of peptide chemistry, mass spectrometry and NMR spectroscopy, showing connections between residues 9 and 14, 11 and 25, and 18 and 26

    Bone Tissue Response to Porous and Functionalized Titanium and Silica Based Coatings

    Get PDF
    Background: Topography and presence of bio-mimetic coatings are known to improve osseointegration. The objective of this study was to evaluate the bone regeneration potential of porous and osteogenic coatings. Methodology: Six-implants [Control (CTR); porous titanium coatings (T1, T2); thickened titanium (Ti) dioxide layer (TiO2); Amorphous Microporous Silica (AMS) and Bio-active Glass (BAG)] were implanted randomly in tibiae of 20-New Zealand white rabbits. The animals were sacrificed after 2 or 4 weeks. The samples were analyzed histologically and histomorphometrically. In the initial bone-free areas (bone regeneration areas (BRAs)), the bone area fraction (BAF) was evaluated in the whole cavity (500 mm, BAF-500), in the implant vicinity (100 mm, BAF-100) and further away (100–500 mm, BAF-400) from the implant. Bone-to-implant contact (BIC-BAA) was measured in the areas where the implants were installed in contact to the host bone (bone adaptation areas (BAAs)) to understand and compare the bone adaptation. Mixed models were used for statistical analysis. Principal Findings: After 2 weeks, the differences in BAF-500 for different surfaces were not significant (p.0.05). After 4 weeks, a higher BAF-500 was observed for BAG than CTR. BAF-100 for AMS was higher than BAG and BAF-400 for BAG was higher than CTR and AMS. For T1 and AMS, the bone regeneration was faster in the 100-mm compared to the 400-mm zone. BIC-BAA for AMS and BAG was lower after 4 than 2 weeks. After 4 weeks, BIC-BAA for BAG was lower than AMS and CTR. Conclusions: BAG is highly osteogenic at a distance from the implant. The porous titanium coatings didn’t stimulate bone regeneration but allowed bone growth into the pores. Although AMS didn’t stimulate higher bone response, it has a potential of faster bone growth in the vicinity compared to further away from the surface. BIC-BAA data were inconclusive to understand the bone adaptation.status: publishe
    corecore