36 research outputs found

    Record RF performance of standard 90 nm CMOS technology

    Get PDF
    We have optimized 3 key RF devices realized in standard logic 90 nm CMOS technology and report a record performance in terms of n-MOS maximum oscillation frequency f/sub max/ (280 GHz), varactor tuning range and varactor and inductor quality factor

    Rapid and highly variable warming of lake surface waters around the globe

    Get PDF
    In this first worldwide synthesis of in situ and satellite-derived lake data, we find that lake summer surface water temperatures rose rapidly (global mean = 0.34°C decade−1) between 1985 and 2009. Our analyses show that surface water warming rates are dependent on combinations of climate and local characteristics, rather than just lake location, leading to the counterintuitive result that regional consistency in lake warming is the exception, rather than the rule. The most rapidly warming lakes are widely geographically distributed, and their warming is associated with interactions among different climatic factors—from seasonally ice-covered lakes in areas where temperature and solar radiation are increasing while cloud cover is diminishing (0.72°C decade−1) to ice-free lakes experiencing increases in air temperature and solar radiation (0.53°C decade−1). The pervasive and rapid warming observed here signals the urgent need to incorporate climate impacts into vulnerability assessments and adaptation efforts for lakes.Peer reviewe

    Phototrophic biofilms and their potential applications

    Get PDF
    Phototrophic biofilms occur on surfaces exposed to light in a range of terrestrial and aquatic environments. Oxygenic phototrophs like diatoms, green algae, and cyanobacteria are the major primary producers that generate energy and reduce carbon dioxide, providing the system with organic substrates and oxygen. Photosynthesis fuels processes and conversions in the total biofilm community, including the metabolism of heterotrophic organisms. A matrix of polymeric substances secreted by phototrophs and heterotrophs enhances the attachment of the biofilm community. This review discusses the actual and potential applications of phototrophic biofilms in wastewater treatment, bioremediation, fish-feed production, biohydrogen production, and soil improvement

    Rapid and highly variable warming of lake surface waters around the globe

    Full text link
    peer reviewedIn this first worldwide synthesis of in situ and satellite-derived lake data, we find that lake summer surface water temperatures rose rapidly (global mean = 0.34°C decade-1) between 1985 and 2009. Our analyses show that surface water warming rates are dependent on combinations of climate and local characteristics, rather than just lake location, leading to the counterintuitive result that regional consistency in lake warming is the exception, rather than the rule. The most rapidly warming lakes are widely geographically distributed, and their warming is associated with interactions among different climatic factors - from seasonally ice-covered lakes in areas where temperature and solar radiation are increasing while cloud cover is diminishing (0.72°C decade-1) to ice-free lakes experiencing increases in air temperature and solar radiation (0.53°C decade-1). The pervasive and rapid warming observed here signals the urgent need to incorporate climate impacts into vulnerability assessments and adaptation efforts for lakes. © 2015. American Geophysical Union. All Rights Reserved

    Rapid and highly variable warming of lake surface waters around the globe

    Get PDF
    Peer reviewed. ©2015. The Authors.This is an open access article under theterms of the Creative CommonsAttribution-NonCommercial-N oDerivsLicense, which permits use and distri-bution in any medium, provided theoriginal work is properly cited, the use isnon-commerc ial and no modificationsor adaptations are made.In this first worldwide synthesis of in situ and satellite-derived lake data, we find that lake summer surface water temperatures rose rapidly (global mean = 0.34°C decade 1) between 1985 and 2009. Our analyses show that surface water warming rates are dependent on combinations of climate and local characteristics, rather than just lake location, leading to the counterintuitive result that regional consistency in lake warming is the exception, rather than the rule. The most rapidly warming lakes are widely geographically distributed, and their warming is associated with interactions among different climatic factors —from seasonally ice-covered lakes in areas where temperature and solar radiation are increasing while cloud cover is diminishing (0.72°C decade 1) to ice-free lakes experiencing increases in air temperature and solar radiation (0.53°C decade 1). The pervasive and rapid warming observed here signals the urgent need to incorporate climate impacts into vulnerability assessments and adaptation efforts for lakes

    Record Q symmetrical inductors for 10-GHz LC-VCOs in 0.18-μm gate-length CMOS

    No full text
    We report a single-loop inductor suitable for integration in a differential voltage-controlled oscillator (LC-VCO) with 0. 6-nH inductance and record quality factors of 18 at 10 GHz and 20 at 15 GHz fabricated in an industrial CMOS process on a 10 Ωcm substrate. A new lumped element model which accurately describes the inductor performance without the need for frequency-dependent elements is presented. During the course of this work, we found that a patterned ground shield significantly improves the inductor performance at these frequencies, but only when the polysilicon bars are connected from the center of the inductor.</p

    Record Q spiral inductors in standard CMOS

    No full text
    High-Q spiral inductors, either realized as discrete elements in thin-film technologies, or as integrated components in IC processes, are essential to realize key RF circuitry like VCO's and LNA's. We have demonstrated for the first time that by dividing a spiral inductor into four parallel current paths of equal resistance and inductance current crowding can be suppressed, allowing a record Q of 15 for a 2 GHz 5 nH inductor in standard CMOS, representing a 40 % improvement over previous art. The proposed division into parallel current paths can be realized without process modifications, reduces CMP dishing, and is expected to provide even larger performance gains in terms of quality factor Q and inductor area for IC and thin-film processes employing thicker metal layers and low-K materials.</p
    corecore