3 research outputs found

    Stoffliche Charakterisierung radioaktiver Abfallprodukte durch ein Multi-Element-Analyseverfahren basierend auf der instrumentellen Neutronen-Aktivierungs-Analyse – MEDINA –

    Get PDF
    Radioactive waste has to meet the specifications and acceptance criteria defined by national regulatory and management authorities for its intermediate and final storage. In Germany the Federal Office for Radiation Protection (Bundesamt für Strahlenschutz - BfS) has established waste acceptance requirements for the Konrad repository. Konrad is the disposal for radioactive waste with negligible heat generation and is located near the city of Salzgitter and is currently under construction. It will start operation not before the year 2021. The waste-acceptance-requirements are derived from a site-specific safety assessment. They include specific requirements on waste forms, packaging as well as limitations to activities of individual radionuclides and limitations to masses of non-radioactive harmful substances. The amount of chemically toxic elements in the waste is limited in order to avoid pollution of underground water reserves. To comply with these requirements every waste package has to be characterised in its radiological and chemical composition. This characterisation can be performed on the basis of existing documentation or, if the documentation is insufficient, on further analytical analysis. Segmented or integral gamma-scanning as well as active or passive neutron counting are used world wide as the standard measurement methods for the radiological characterisation and quality checking of radioactive waste. These techniques determine the isotope specific activity of waste packages, but they do not allow the detection of non-radioactive hazardous substances inside the waste packages. Against this background the Institute of Nuclear Engineering and Technology Transfer (NET) at RWTH Aachen University and the Institute of Safety Research and Reactor Technology at Forschungszentrum Jülich jointly develop an innovative non-destructive analytical technique called MEDINA - “Multi-Element Detection based on Instrumental Neutron Activation” for the identification and quantification of toxic elements in radioactive waste forms. The physical basis of MEDINA is the Prompt- and Delayed-Gamma-Neutron-Activation-Analysis (P&DGNAA). The neutron activation analysis of material samples in the gram range is state-of-the-art of science and technology under use of thermal or cold neutrons at research reactors. The thereof retrieved nuclear data and the results of the feasibility study for the characterization of large-volume samples up to a volume of 50 l /1-5/ are the scientific basis of the present dissertation. With a newly developed test facility and an innovative algorithms for a rotationally dependent analysis the element quantification of larger inhomogeneous samples can be performed by taking into account the gamma and neutron self-shielding for the first time. [...
    corecore