2,843 research outputs found
Seeing Numbers
In 1890 William James listed several “elementary mental categories” that he postulated as having a natural origin. Among them, alongside the ideas of time and space, he also listed the idea of number. A symptomatic feature of Informatics as well as Cognitive Science today is the tendency not to talk so much about ideas as about their representations, either in the computer or in the brain. Taking up somewhat different perspective I will discuss the way natural numbers, viewed as counts of real or imagined objects, may be experienced phenomenally. I put forth even some speculative ideas about mental number processing by numerical savants
An NMR Analog of the Quantum Disentanglement Eraser
We report the implementation of a three-spin quantum disentanglement eraser
on a liquid-state NMR quantum information processor. A key feature of this
experiment was its use of pulsed magnetic field gradients to mimic projective
measurements. This ability is an important step towards the development of an
experimentally controllable system which can simulate any quantum dynamics,
both coherent and decoherent.Comment: Four pages, one figure (RevTeX 2.1), to appear in Physics Review
Letter
Subsystem Pseudo-pure States
A critical step in experimental quantum information processing (QIP) is to
implement control of quantum systems protected against decoherence via
informational encodings, such as quantum error correcting codes, noiseless
subsystems and decoherence free subspaces. These encodings lead to the promise
of fault tolerant QIP, but they come at the expense of resource overheads.
Part of the challenge in studying control over multiple logical qubits, is
that QIP test-beds have not had sufficient resources to analyze encodings
beyond the simplest ones. The most relevant resources are the number of
available qubits and the cost to initialize and control them. Here we
demonstrate an encoding of logical information that permits the control over
multiple logical qubits without full initialization, an issue that is
particularly challenging in liquid state NMR. The method of subsystem
pseudo-pure state will allow the study of decoherence control schemes on up to
6 logical qubits using liquid state NMR implementations.Comment: 9 pages, 1 Figur
SOPHIE velocimetry of Kepler transit candidates XI. Kepler-412 system: probing the properties of a new inflated hot Jupiter
We confirm the planetary nature of Kepler-412b, listed as planet candidate
KOI-202 in the Kepler catalog, thanks to our radial velocity follow-up program
of Kepler-released planet candidates, which is on going with the SOPHIE
spectrograph. We performed a complete analysis of the system by combining the
Kepler observations from Q1 to Q15, to ground-based spectroscopic observations
that allowed us to derive radial velocity measurements, together with the host
star parameters and properties. We also analyzed the light curve to derive the
star's rotation period and the phase function of the planet, including the
secondary eclipse. We found the planet has a mass of 0.939 0.085
M and a radius of 1.325 0.043 R which makes it a member
of the bloated giant subgroup. It orbits its G3 V host star in 1.72 days. The
system has an isochronal age of 5.1 Gyr, consistent with its moderate stellar
activity as observed in the Kepler light curve and the rotation of the star of
17.2 1.6 days. From the detected secondary, we derived the day side
temperature as a function of the geometric albedo and estimated the geometrical
albedo, Ag, is in the range 0.094 to 0.013. The measured night side flux
corresponds to a night side brightness temperature of 2154 83 K, much
greater than what is expected for a planet with homogeneous heat
redistribution. From the comparison to star and planet evolution models, we
found that dissipation should operate in the deep interior of the planet. This
modeling also shows that despite its inflated radius, the planet presents a
noticeable amount of heavy elements, which accounts for a mass fraction of 0.11
0.04.Comment: 11 pages, 9 figure
A Note on the correspondence between Qubit Quantum Operations and Special Relativity
We exploit a well-known isomorphism between complex hermitian
matrices and , which yields a convenient real vector
representation of qubit states. Because these do not need to be normalized we
find that they map onto a Minkowskian future cone in , whose
vertical cross-sections are nothing but Bloch spheres. Pure states are
represented by light-like vectors, unitary operations correspond to special
orthogonal transforms about the axis of the cone, positive operations
correspond to pure Lorentz boosts. We formalize the equivalence between the
generalized measurement formalism on qubit states and the Lorentz
transformations of special relativity, or more precisely elements of the
restricted Lorentz group together with future-directed null boosts. The note
ends with a discussion of the equivalence and some of its possible
consequences.Comment: 6 pages, revtex, v3: revised discussio
Benchmarking quantum control methods on a 12-qubit system
In this letter, we present an experimental benchmark of operational control
methods in quantum information processors extended up to 12 qubits. We
implement universal control of this large Hilbert space using two complementary
approaches and discuss their accuracy and scalability. Despite decoherence, we
were able to reach a 12-coherence state (or 12-qubits pseudo-pure cat state),
and decode it into an 11 qubit plus one qutrit labeled observable pseudo-pure
state using liquid state nuclear magnetic resonance quantum information
processors.Comment: 11 pages, 4 figures, to be published in PR
SOPHIE velocimetry of Kepler transit candidates. XV. KOI-614b, KOI-206b, and KOI-680b: a massive warm Jupiter orbiting a G0 metallic dwarf and two highly inflated planets with a distant companion around evolved F-type stars
We report the validation and characterization of three new transiting
exoplanets using SOPHIE radial velocities: KOI-614b, KOI-206b, and KOI-680b.
KOI-614b has a mass of and a radius of
, and it orbits a G0, metallic
([Fe/H]=) dwarf in 12.9 days. Its mass and radius are familiar and
compatible with standard planetary evolution models, so it is one of the few
known transiting planets in this mass range to have an orbital period over ten
days. With an equilibrium temperature of K, this places
KOI-614b at the transition between what is usually referred to as "hot" and
"warm" Jupiters. KOI-206b has a mass of and a
radius of , and it orbits a slightly evolved F7-type
star in a 5.3-day orbit. It is a massive inflated hot Jupiter that is
particularly challenging for planetary models because it requires unusually
large amounts of additional dissipated energy in the planet. On the other hand,
KOI-680b has a much lower mass of and requires less
extra-dissipation to explain its uncommonly large radius of . It is one of the biggest transiting planets characterized so far,
and it orbits a subgiant F9-star well on its way to the red giant stage, with
an orbital period of 8.6 days. With host stars of masses of
and , respectively, KOI-206b,
and KOI-680b are interesting objects for theories of formation and survival of
short-period planets around stars more massive than the Sun. For those two
targets, we also find signs of a possible distant additional companion in the
system
A Method for Modeling Decoherence on a Quantum Information Processor
We develop and implement a method for modeling decoherence processes on an
N-dimensional quantum system that requires only an -dimensional quantum
environment and random classical fields. This model offers the advantage that
it may be implemented on small quantum information processors in order to
explore the intermediate regime between semiclassical and fully quantum models.
We consider in particular system-environment couplings which
induce coherence (phase) damping, though the model is directly extendable to
other coupling Hamiltonians. Effective, irreversible phase-damping of the
system is obtained by applying an additional stochastic Hamiltonian on the
environment alone, periodically redressing it and thereby irreversibliy
randomizing the system phase information that has leaked into the environment
as a result of the coupling. This model is exactly solvable in the case of
phase-damping, and we use this solution to describe the model's behavior in
some limiting cases. In the limit of small stochastic phase kicks the system's
coherence decays exponentially at a rate which increases linearly with the kick
frequency. In the case of strong kicks we observe an effective decoupling of
the system from the environment. We present a detailed implementation of the
method on an nuclear magnetic resonance quantum information processor.Comment: 12 pages, 9 figure
- …
