3 research outputs found

    Insecticidal Seed and In-Furrow Treatment Recommendations for Soybean and Sunflower

    Get PDF
    Throughout the 2016 and 2017 growing season, field research experiments were replicated across South Dakota. Many times seed treatments are used prophylactic, which is neither good for the producers or the environment. Producers will be able to reduce production costs, if they only use a seed treatment when necessary. The purpose of the first experiment was to determine the effects of seed treatments in combination with planting date and seeding rate on soybean yield. To determine the effects, two years of field data from four eastern South Dakota locations were compared. Within each year and location we compared two planting dates (May vs. June), seven seeding rates (60,000, 80,000, 100,000, 120,000, 140,000, 160,000, and 180,000 seeds per acre), and three seed treatments (untreated control, fungicide only, and a fungicide+insecticide combination) with all treatment factor combinations replicated six times at each location. Stand count data was taken 14 days after soybean emergence. Yield data was collected from the middle two rows of each plot. The purpose of the second experiment was to determine the influence of commercial and experimental in-furrow insecticides as well as an insecticide seed treatment at two different rates on sunflower yield. This experiment was conducted at two locations near Volga, SD in the 2016 growing season. In 2017, this experiment was replicated once near Volga, SD and once near Highmore, SD. The in-furrow insecticides included Ethos XB, Capture LFR, Capture 3RIVE and Mustang Maxx. The seed treatment used was Cruiser 5FS at 0.25 and 0.375 mg per seed. These six different treatments were compared to an untreated control. All plots were replicated six times at each location. Stand counts were taken 14 days after emergence. Root injury feeding was collected 28 days after emergence. Yield data was collected from the middle two rows of each plot

    Defining optimal soybean seeding rates and associated risk across North America

    Get PDF
    Soybean [Glycine max (L.) Merr.] seeding rate research across North America is typically conducted in small geo-political regions where environmental effects on the seeding rate × yield relationship are minimized. Data from 211 individual field studies (∼21,000 data points, 2007–2017) were combined from across North America ranging in yield from 1,000– 7,500 kg ha−1. Cluster analysis was used to stratify each individual field study into similar environmental (soil × climate) clusters and into high (HYL), medium (MYL), and low (LYL) yield levels. Agronomically optimal seeding rates (AOSR) were calculated and Monte Carlo risk analysis was implemented. Within the two northern most clusters the AOSR was higher in the LYL followed by the MYL and then HYL. Within the farthest south cluster, a relatively small (±15,000 seeds ha−1) change in seeding rate from the MYL was required to reach the AOSR of the LYL and HYL, respectively. The increase in seeding rate to reach the LYL AOSR was relatively greater (5x) than the decrease to reach the HYL AOSR within the northern most cluster. Regardless, seeding rates below the AOSR presented substantial risk and potential yield loss, while seeding rates above provided slight risk reduction and yield increases. Specific to LYLs and MYLs, establishing and maintaining an adequate plant stand until harvest maximized yield regardless of the seeding rate, while maximizing seed number was important with lower seeding rates. These findings will help growers manage their soybean seed investment by adjusting seeding rates based upon the productivity of the environment.Fil: Gaspar, Adam P.. Dow Agrosciences Argentina Sociedad de Responsabilidad Limitada.; ArgentinaFil: Mourtzinis, Spyridon. University of Wisconsin; Estados UnidosFil: Kyle, Don. Dow Agrosciences Argentina Sociedad de Responsabilidad Limitada.; ArgentinaFil: Galdi, Eric. Dow Agrosciences Argentina Sociedad de Responsabilidad Limitada.; ArgentinaFil: Lindsey, Laura E.. Ohio State University; Estados UnidosFil: Hamman, William P.. Ohio State University; Estados UnidosFil: Matcham, Emma G. University of Wisconsin; Estados UnidosFil: Kandel, Hans J.. North Dakota State University; Estados UnidosFil: Schmitz, Peder. North Dakota State University; Estados UnidosFil: Stanley, Jordan D.. North Dakota State University; Estados UnidosFil: Schmidt, John P.. Dow Agrosciences Argentina Sociedad de Responsabilidad Limitada.; ArgentinaFil: Mueller, Daren S.. University of Iowa; Estados UnidosFil: Nafziger, Emerson D.. University of Illinois; Estados UnidosFil: Ross, Jeremy. University of Arkansas for Medical Sciences; Estados UnidosFil: Carter, Paul R.. Dow Agrosciences Argentina Sociedad de Responsabilidad Limitada.; ArgentinaFil: Varenhorst, Adam J.. University of South Dakota; Estados UnidosFil: Wise, Kiersten A.. University of Kentucky; Estados UnidosFil: Ciampitti, Ignacio Antonio. Kansas State University; Estados UnidosFil: Carciochi, Walter Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina. Kansas State University; Estados UnidosFil: Chilvers, Martin I.. Michigan State University; Estados UnidosFil: Hauswedell, Brady. University of South Dakota; Estados UnidosFil: Tenuta, Albert U.. University of Guelph; CanadáFil: Conley, Shawn P.. University of Wisconsin; Estados Unido

    Defining optimal soybean seeding rates and associated risk across North America

    No full text
    Soybean [Glycine max (L.) Merr.] seeding rate research across North America is typically conducted in small geo-political regions where environmental effects on the seeding rate × yield relationship are minimized. Data from 211 individual field studies (∼21,000 data points, 2007–2017) were combined from across North America ranging in yield from 1,000– 7,500 kg ha−1. Cluster analysis was used to stratify each individual field study into similar environmental (soil × climate) clusters and into high (HYL), medium (MYL), and low (LYL) yield levels. Agronomically optimal seeding rates (AOSR) were calculated and Monte Carlo risk analysis was implemented. Within the two northern most clusters the AOSR was higher in the LYL followed by the MYL and then HYL. Within the farthest south cluster, a relatively small (±15,000 seeds ha−1) change in seeding rate from the MYL was required to reach the AOSR of the LYL and HYL, respectively. The increase in seeding rate to reach the LYL AOSR was relatively greater (5x) than the decrease to reach the HYL AOSR within the northern most cluster. Regardless, seeding rates below the AOSR presented substantial risk and potential yield loss, while seeding rates above provided slight risk reduction and yield increases. Specific to LYLs and MYLs, establishing and maintaining an adequate plant stand until harvest maximized yield regardless of the seeding rate, while maximizing seed number was important with lower seeding rates. These findings will help growers manage their soybean seed investment by adjusting seeding rates based upon the productivity of the environment.Fil: Gaspar, Adam P.. Dow Agrosciences Argentina Sociedad de Responsabilidad Limitada.; ArgentinaFil: Mourtzinis, Spyridon. University of Wisconsin; Estados UnidosFil: Kyle, Don. Dow Agrosciences Argentina Sociedad de Responsabilidad Limitada.; ArgentinaFil: Galdi, Eric. Dow Agrosciences Argentina Sociedad de Responsabilidad Limitada.; ArgentinaFil: Lindsey, Laura E.. Ohio State University; Estados UnidosFil: Hamman, William P.. Ohio State University; Estados UnidosFil: Matcham, Emma G. University of Wisconsin; Estados UnidosFil: Kandel, Hans J.. North Dakota State University; Estados UnidosFil: Schmitz, Peder. North Dakota State University; Estados UnidosFil: Stanley, Jordan D.. North Dakota State University; Estados UnidosFil: Schmidt, John P.. Dow Agrosciences Argentina Sociedad de Responsabilidad Limitada.; ArgentinaFil: Mueller, Daren S.. University of Iowa; Estados UnidosFil: Nafziger, Emerson D.. University of Illinois; Estados UnidosFil: Ross, Jeremy. University of Arkansas for Medical Sciences; Estados UnidosFil: Carter, Paul R.. Dow Agrosciences Argentina Sociedad de Responsabilidad Limitada.; ArgentinaFil: Varenhorst, Adam J.. University of South Dakota; Estados UnidosFil: Wise, Kiersten A.. University of Kentucky; Estados UnidosFil: Ciampitti, Ignacio Antonio. Kansas State University; Estados UnidosFil: Carciochi, Walter Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina. Kansas State University; Estados UnidosFil: Chilvers, Martin I.. Michigan State University; Estados UnidosFil: Hauswedell, Brady. University of South Dakota; Estados UnidosFil: Tenuta, Albert U.. University of Guelph; CanadáFil: Conley, Shawn P.. University of Wisconsin; Estados Unido
    corecore