135 research outputs found

    Janine Anderson Sawada, Faith in Mount Fuji : The Rise of Independent Religion in Early Modern Japan

    Get PDF
    departmental bulletin pape

    Normal-state properties of the antiperovskite oxide Sr3x_{3-x}SnO revealed by 119^{119}Sn-NMR

    Get PDF
    We have performed 119^{119}Sn-NMR measurements on the antiperovskite oxide superconductor Sr3x_{3-x}SnO to investigate how its normal state changes with the Sr deficiency. A two-peak structure was observed in the NMR spectra of all the measured samples. This suggests that the phase separation tends to occur between the nearly stoichiometric and heavily Sr-deficient Sr3x_{3-x}SnO phases. The measurement of the nuclear spin-lattice relaxation rate 1/T11/T_1 indicates that the Sr-deficient phase shows a conventional metallic behavior due to the heavy hole doping. In contrast, the nearly stoichiometric phase exhibits unusual temperature dependence of 1/T11/T_1, attributable to the presence of a Dirac-electron band.Comment: 5 pages, 4 figure

    Stannites – a new promising class of durable electrocatalysts for efficient water oxidation

    Get PDF
    The oxygen evolution reaction (OER) through water oxidation is a key process for multiple energy storage technologies required for a sustainable energy economy such as the formation of the fuel hydrogen from water and electricity, or metal‐air batteries. Herein, we investigate the suitability of Cu2FeSnS4 for the OER and demonstrate its superiority over iron sulfide, iron (oxy)hydroxides and benchmark noble‐metal catalysts in alkaline media. Electrodeposited Cu2FeSnS4 yields the current densities of 10 and 1000 mA/cm2 at overpotentials of merely 228 and 330 mV, respectively. State‐of‐the‐art analytical methods are applied before and after electrocatalysis to uncover the fate of the Cu2FeSnS4 precatalyst under OER conditions and to deduce structure‐activity relationships. Cu2FeSnS4 is the first compound reported for OER among the broad class of stannite structure type materials containing multiple members with highly active earth‐abundant transition‐metals for OER.DFG, 390540038, EXC 2008: Cluster of Excellence UniSysCatTU Berlin, Open-Access-Mittel - 201

    Maxwell's equations revisited -- mental imagery and mathematical symbols

    Get PDF
    Using Maxwell's mental imagery of a tube of fluid motion of an imaginary fluid, we derive his equations curlE=Bt\operatorname{curl} \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}, curlH=Dt+j\operatorname{curl} \mathbf{H} = \frac{\partial \mathbf{D}}{\partial t} + \mathbf{j}, divD=ϱ\operatorname{div} \mathbf{D} = \varrho, divB=0\operatorname{div} \mathbf{B} = 0, which together with the constituting relations D=ε0E\mathbf{D} = \varepsilon_0 \mathbf{E}, B=μ0H\mathbf{B} = \mu_0 \mathbf{H}, form what we call today Maxwell's equations. Main tools are the divergence, curl and gradient integration theorems and a version of Poincare's lemma formulated in vector calculus notation. Remarks on the history of the development of electrodynamic theory, quotations and references to original and secondary literature complement the paper

    Boosting water oxidation through in situ electroconversion of manganese gallide: an intermetallic precursor approach

    Get PDF
    For the first time, the manganese gallide (MnGa4) served as an intermetallic precursor, which upon in situ electroconversion in alkaline media produced high‐performance and long‐term‐stable MnOx‐based electrocatalysts for water oxidation. Unexpectedly, its electrocorrosion (with the concomitant loss of Ga) leads simultaneously to three crystalline types of MnOx minerals with distinct structures and induced defects: birnessite δ‐MnO2, feitknechtite β‐MnOOH, and hausmannite α‐Mn3O4. The abundance and intrinsic stabilization of MnIII/MnIV active sites in the three MnOx phases explains the superior efficiency and durability of the system for electrocatalytic water oxidation. After electrophoretic deposition of the MnGa4 precursor on conductive nickel foam (NF), a low overpotential of 291 mV, comparable to that of precious‐metal‐based catalysts, could be achieved at a current density of 10 mA cm−2 with a durability of more than five days.DFG, 390540038, EXC 2008: UniSysCatTU Berlin, Open-Access-Mittel - 201

    Description of Paramoeba atlantica n. sp. (Amoebozoa, Dactylopodida) – a Marine Amoeba from the Eastern Atlantic, with Emendation of the Dactylopodid Families

    Get PDF
    A strain of marine amoeba has been isolated and studied from the bottom sediments of the Great Meteor Seamount (Atlantic Ocean, 29°36.29′N; 28°59.12′W; 267.4 m deep). This amoeba has a typical dactylopodiid morphotype, a coat of delicate, boat-shaped scales, and a Perkinsela-like organism (PLO), an obligatory, deeply-specialized kinetoplastid symbiont near the nucleus. These characters allow us to include this species into the genus Paramoeba. However, it differs from its only described species, P. eilhardi, in the structure of scales. P. atlantica n. sp. is established therefore to accommodate the studied strain. SSU rRNA gene sequence analysis suggests that P. atlantica belongs to the Dactylopodida, and is sister to a monophyletic clade of P. eilhardi and all Neoparamoeba spp., branching separately from P. eilhardi. Therefore, the genera Paramoeba and Neoparamoeba, currently defined based on the cell surface ultrastructure, might be paraphyletic and probably should be synonymized, as further evidence is accumulated. Based on the data available we emend the families Vexilliferidae and Paramoebidae to make them more consistent with the current phylogenetic schemes

    In Situ Detection of Iron in Oxidation States ≥ IV in Cobalt‐Iron Oxyhydroxide Reconstructed during Oxygen Evolution Reaction

    Get PDF
    Cobalt‐iron oxyhydroxides (CoFeOOHx) are among the most active catalysts for the oxygen evolution reaction (OER). However, their redox behavior and the electronic and chemical structure of their active sites are still ambiguous. To shed more light on this, the complete and rapid reconstruction of four helical cobalt‐iron borophosphates with different Co:Fe ratios into disordered cobalt‐iron oxyhydroxides can be achieved, which are electrolyte‐penetrable and thus most transition metal sites can potentially participate in the OER. To track the redox behavior and to identify the active structure, quasi in situ X‐ray absorption spectroscopy is applied. Iron in high oxidation states ≥ IV (Fe4+) and its substantial redox behavior with an average oxidation state of around 2.8 to above 3.2 is detected. Furthermore, a 6% contraction of the Fe‐O bond length compared to Fe3+OOH references is observed during OER and a strong distortion of the [MO6] octahedra is identified. It is hypothesized that this bond contraction is caused by the presence of oxyl radicals and that di‐µ‐oxyl radical bridged cobalt‐iron centers are the active sites. It is anticipated that the detailed electronic and structural description can substantially contribute to the debate on the nature of the active site in bimetallic iron‐containing OER catalysts

    Understanding the formation of bulk- and surface-active layered (oxy)hydroxides for water oxidation starting from a cobalt selenite precursor

    Get PDF
    The urgent need for a stable, efficient, and affordable oxygen evolution reaction (OER) catalyst has led to the investigation of a vast amount of transition metal materials with multiple different anions.In situandpostcatalytic characterization shows that most materials transform during the harsh OER conditions to layered (oxy)hydroxides (LOH). Several open questions concerning thesein situformed LOH remain such as: an explanation for their strongly varying activities, or the effect of the precatalyst structure, leaching anions, and transformation conditions on the formed LOH. Herein, we report on a cobalt selenite precursor, which, depending on pH and potential, transforms irreversibly into two different LOH OER catalysts. Combining multiple electrochemical and analytical methodsexandin situ, we prove that one of these products is near-surface catalytically active and the other one throughout the bulk with anin situaverage cobalt oxidation state of 3.2. We deduce a detailed structural model explaining these differences and propose general concepts relating both the precatalyst structure and the transformation conditions to the final catalyst. Further, we apply these models to the most promising non-noble metal catalyst, NiFe LOH

    In‐Liquid Plasma Modified Nickel Foam: NiOOH/NiFeOOH Active Site Multiplication for Electrocatalytic Alcohol, Aldehyde, and Water Oxidation

    Get PDF
    The oxygen evolution reaction (OER) and the value-added oxidation of renewable organic substrates are critical to supply electrons and protons for the synthesis of sustainable fuels. To meet industrial requirements, new methods for a simple, fast, environmental-friendly and cheap synthesis of robust, self-supported and high surface area electrodes are required. Herein, a novel in-liquid plasma (plasma electrolysis) approach for the growth of hierarchical nanostructures on nickel foam is reported on. Under morphology retention, iron can be doped into this high surface area electrode. For the oxidation of 5-(hydroxymethyl)furfural and benzyl alcohol, the iron-free, plasma-treated electrode is more suitable reaching current densities up to 800 mA cm2^{-2} with Faradaic efficiencies above 95%. For the OER, the iron-doped nickel foam electrode reaches the industrially relevant current density of 500 mA cm2^{-2} at 1.473 ± 0.013VRHE_{VRHE} (60 °C) and shows no activity decrease over 140 h. The different effects of iron doping are rationalized using methanol probing and in situ Raman spectroscopy. Furthermore, the intrinsic activity is separated from the number of active sites, and, for the organic oxidation reactions, diffusion limitations are revealed. The authors anticipate that the plasma modified nickel foam will be suitable for various (electro)catalytic processes

    Enabling low-carbon development in poor countries

    Get PDF
    The challenges associated with achieving sustainable development goals and stabilizing the world’s climate cannot be solved without significant efforts by developing and newly-emerging countries. With respect to climate change mitigation, the main challenge for developing countries lies in avoiding future emissions and lock-ins into emission-intensive technologies, rather than reducing today’s emissions. While first best policy instruments like carbon prices could prevent increasing carbonization, those policies are often rejected by developing countries out of a concern for negative repercussions on development and long-term growth. In addition, policy environments in developing countries impose particular challenges for regulatory policy aiming to incentivize climate change mitigation and sustainable development. This chapter first discusses how climate policy could potentially interact with sustainable development and economic growth. It focuses, in particular, on the role of industrial sector development. The chapter then continues by discussing how effective policy could be designed, specifically taking developing country circumstances into account
    corecore