22,555 research outputs found
High pressure gas filter system Patent
Developing high pressure gas purification and filtration system for use in test operations of space vehicle
High pressure helium purifier Patent
Apparatus and method capable of receiving large quantity of high pressure helium, removing impurities, and discharging at received pressur
Solving the characteristic initial value problem for colliding plane gravitational and electromagnetic waves
A method is presented for solving the characteristic initial value problem
for the collision and subsequent nonlinear interaction of plane gravitational
or gravitational and electromagnetic waves in a Minkowski background. This
method generalizes the monodromy transform approach to fields with nonanalytic
behaviour on the characteristics inherent to waves with distinct wave fronts.
The crux of the method is in a reformulation of the main nonlinear symmetry
reduced field equations as linear integral equations whose solutions are
determined by generalized (``dynamical'') monodromy data which evolve from data
specified on the initial characteristics (the wavefronts).Comment: 4 pages, RevTe
Proof of a generalized Geroch conjecture for the hyperbolic Ernst equation
We enunciate and prove here a generalization of Geroch's famous conjecture
concerning analytic solutions of the elliptic Ernst equation. Our
generalization is stated for solutions of the hyperbolic Ernst equation that
are not necessarily analytic, although it can be formulated also for solutions
of the elliptic Ernst equation that are nowhere axis-accessible.Comment: 75 pages (plus optional table of contents). Sign errors in elliptic
case equations (1A.13), (1A.15) and (1A.25) are corrected. Not relevant to
proof contained in pape
Thermodynamics of the frustrated - Heisenberg ferromagnet on the body-centered cubic lattice with arbitrary spin
We use the spin-rotation-invariant Green's function method as well as the
high-temperature expansion to discuss the thermodynamic properties of the
frustrated spin- - Heisenberg magnet on the body-centered
cubic lattice. We consider ferromagnetic nearest-neighbor bonds and
antiferromagnetic next-nearest-neighbor bonds and arbitrary spin
. We find that the transition point between the ferromagnetic ground
state and the antiferromagnetic one is nearly independent of the spin ,
i.e., it is very close to the classical transition point . At finite temperatures we focus on the parameter regime
with a ferromagnetic ground-state. We calculate the Curie
temperature and derive an empirical formula describing the
influence of the frustration parameter and spin on . We find
that the Curie temperature monotonically decreases with increasing frustration
, where very close to the -curve exhibits a
fast decay which is well described by a logarithmic term
. To characterize the magnetic ordering
below and above , we calculate the spin-spin correlation functions
, the spontaneous
magnetization, the uniform static susceptibility as well as the
correlation length . Moreover, we discuss the specific heat and the
temperature dependence of the excitation spectrum. As approaching the
transition point some unusual features were found, such as negative
spin-spin correlations at temperatures above even though the ground state
is ferromagnetic or an increase of the spin stiffness with growing temperature.Comment: 19 pages, 10 figures, version as in EPJ
Collision of plane gravitational and electromagnetic waves in a Minkowski background: solution of the characteristic initial value problem
We consider the collisions of plane gravitational and electromagnetic waves
with distinct wavefronts and of arbitrary polarizations in a Minkowski
background. We first present a new, completely geometric formulation of the
characteristic initial value problem for solutions in the wave interaction
region for which initial data are those associated with the approaching waves.
We present also a general approach to the solution of this problem which
enables us in principle to construct solutions in terms of the specified
initial data. This is achieved by re-formulating the nonlinear dynamical
equations for waves in terms of an associated linear problem on the spectral
plane. A system of linear integral ``evolution'' equations which solve this
spectral problem for specified initial data is constructed. It is then
demonstrated explicitly how various colliding plane wave space-times can be
constructed from given characteristic initial data.Comment: 33 pages, 3 figures, LaTeX. Accepted for publication in Classical and
Quantum Gravit
Clustering of the Diffuse Infrared Light from the COBE DIRBE maps. I. and limits on the near-IR background
This paper is devoted to studying the CIB through its correlation properties.
We studied the limits on CIB anisotropy in the near IR (1.25, 2.2, and 3.5 \um,
or ) bands at a scale of 0.7\deg\ using the COBE\footnote{ The
National Aeronautics and Space Administration/Goddard Space Flight Center
(NASA/GSFC) is responsible for the design, development, and operation of the
{\it COBE}. Scientific guidance is provided by the {\it COBE} Science Working
Group. GSFC is also responsible for the development of the analysis software
and for the production of the mission data sets.} Diffuse Infrared Background
Experiment (DIRBE) data. In single bands we obtain the upper limits on the
zero-lag correlation signal \w2m4sr2 for the
bands respectively. The DIRBE data exhibit a clear color between the
various bands with a small dispersion. On the other hand most of the CIB is
expected to come from redshifted galaxies and thus should have different color
properties. We use this observation to develop a `color subtraction' method of
linear combinations of maps at two different bands. This method is expected to
suppress the dominant fluctuations from foreground stars and nearby galaxies,
while not reducing (or perhaps even amplifying) the extragalactic contribution
to . Applying this technique gives significantly lower and more isotropic
limits.Comment: 44 pages postcript; includes 5 tables, 14 figures. Astrophysical
Journal, in pres
Clustering of DIRBE Light and IR Background
We outline a new method for estimating the cosmic infrared background using
the spatial and spectral correlation properties of infrared maps. The cosmic
infrared background from galaxies should have a minimum fluctuation of the
order of 10\% on angular scales of the order of 1\deg. We show that a linear
combination of maps at different wavelengths can greatly reduce the
fluctuations produced by foreground stars, while not eliminating the
fluctuations of the background from high redshift galaxies. The method is
potentially very powerful, especially at wavelengths where the foreground is
bright but smooth.Comment: 7 pages postcript, talk at "Unveiling the cosmic infrared background"
workshop, College Park, M
A non-perturbative method of calculation of Green functions
A new method for non-perturbative calculation of Green functions in quantum
mechanics and quantum field theory is proposed. The method is based on an
approximation of Schwinger-Dyson equation for the generating functional by
exactly soluble equation in functional derivatives. Equations of the leading
approximation and the first step are solved for -model. At
(anharmonic oscillator) the ground state energy is calculated. The
renormalization program is performed for the field theory at . At
the renormalization of the coupling involves a trivialization of the theory.Comment: 13 pages, Plain LaTex, no figures, some discussion of results for
anharmonic oscillator and a number of references are added, final version
published in Journal of Physics
- …