
Solving the characteristic initial value problem for colliding plane

gravitational and electromagnetic waves

G. A. Alekseev1,∗ and J. B. Griffiths2,†

1Steklov Mathematical Institute, Gubkina 8, Moscow 117966, GSP-1, Moscow, Russia.
2Department of Mathematical Sciences, Loughborough University, Loughborough,

Leics. LE11 3TU, U.K.

May 4, 2001

Abstract

A method is presented for solving the characteristic initial value problem for the collision
and subsequent nonlinear interaction of plane gravitational or gravitational and electromag-
netic waves in a Minkowski background. This method generalizes the monodromy transform
approach to fields with nonanalytic behaviour on the characteristics inherent to waves with
distinct wave fronts. The crux of the method is in a reformulation of the main nonlinear sym-
metry reduced field equations as linear integral equations whose solutions are determined by
generalized (“dynamical”) monodromy data which evolve from data specified on the initial
characteristics (the wavefronts).

1 Introduction

The collision and subsequent nonlinear interaction between plane gravitational or gravitational
and electromagnetic waves propagating with distinct wavefronts in a Minkowski background
is a well formulated characteristic initial value problem. However, even the discovery of the
integrability of the main field equations for this situation did not lead to a solution of this
complex nonlinear problem. None of the existing solution generating methods have been found
suitable for an effective construction of the solution in the wave interaction region starting from
given characteristic initial data determined by the approaching waves.

The structure of the governing field equations for colliding plane waves, physical and geo-
metrical interpretations, and various particular solutions and techniques, have been described
in [1]. For colliding plane gravitational waves with aligned constant polarizations, the vacuum
Einstein equations are reducible to the linear Euler-Poisson-Darboux equation. In this case, the
corresponding characteristic initial value problem can be solved using the generalized version of
Abel’s transform [2].

However, when the polarizations of the approaching gravitational waves are not constant
and aligned, or in the presence of electromagnetic waves, the governing equations are essentially
nonlinear and are equivalent to the hyperbolic form of the Ernst equations. For this case, an ap-
preciable number of particular solutions are known. These have been found using the “inverse”
method in which a formal solution in the interaction region is first constructed and the corre-
sponding characteristic initial data for the approaching waves is only determined subsequently.
Recently, infinite hierarchies of exact vacuum and electrovacuum solutions with an arbitrary
number of free parameters were found [3], and many of these are of the type appropriate for
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colliding plane waves. However, it is not a simple technical task to simplify these solutions for
particular cases and to calculate the corresponding characteristic initial data.

For the analysis of the characteristic initial value problem for the vacuum hyperbolic Ernst
equation, Hauser and Ernst [4] have generalized their group-theoretical approach (which had
been developed earlier for stationary axisymmetric fields) and constructed a homogeneous Hilbert
problem with corresponding matrix linear integral equations. Many aspects of this problem, in-
cluding the existence and uniqueness of solutions and a detailed proof of the Geroch conjecture,
were elaborated in [5].

However, a general scheme for the solution of various nonlinear initial and boundary value
problems for integrable reductions of Einstein’s equations had been developed in the framework
of the monodromy transform approach [6]–[9]. This can be applied to both the characteristic
initial value problem and the Cauchy problem for the hyperbolic case, as well as some bound-
ary problems for the elliptic case. In this approach, every solution can be characterized by a
set of functions of an auxiliary (spectral) parameter. These functions are interpreted as the
monodromy data on the spectral plane of the fundamental solution of an auxiliary overdeter-
mined linear system associated with the (nonlinear) field equations. These monodromy data are
nonevolving (i.e. coordinate independent) and, generally, can be chosen arbitrarily or specified
in accordance with the properties of the solution being sought. In particular, these data can be
determined (at least in principle) from the initial or boundary data. In this scheme, the solution
of the initial or boundary value problem is determined by the solution of some linear singular
integral equations whose kernel is constructed using these (specified) monodromy data.

Recently a further generalization of this approach was derived in [10], in which a new linear
integral equation form of various hyperbolic integrable reductions of Einstein equations was con-
structed. The scalar kernel of these quasi-Fredholm equations depends on the monodromy data
in a different way – referred to as “dynamical monodromy data”. Unlike the previous method,
these data evolve, and their evolution is prescribed by the characteristic initial conditions. It
appears that these new integral equations are better adapted to the construction of an effec-
tive solution of initial value problems because their coefficients carry more explicit information
about the characteristic initial data and the corresponding analytical structures of the solutions
desired.

In this paper, we present a new approach to the solution of the colliding plane wave problem
and also describe a method that can be implemented in practice to derive explicit solutions. Our
construction generalizes the monodromy transform approach whose formulation in the above
mentioned papers was applicable only for fields that are analytically dependent on some special
set of geometrically defined space-time coordinates. (One of these coordinates determines the
measure of an area on the two-dimensional orbits of the space-time isometry group. The other
is its harmonic conjugate.) However, for colliding plane waves propagating with distinct wave
fronts on a Minkowski background, this analyticity is obviously violated on the wave fronts.
Moreover, the physically accepted matching conditions (the “colliding plane wave conditions”)
imply regular behaviour of the field components near the wave fronts in some appropriate null
coordinates [1]. In terms of geometrically defined coordinates, this regularity leads to a specific
singular behaviour of the coefficients of the associated linear system on these hypersurfaces,
where the first derivatives of the field components become infinite. This gives rise to crucial
consequences for the previous formulation. Additional singularities appear on the spectral plane
for some auxiliary functions. Also, the integral representations diverge at the singular points,
while the normalization of the solutions remains a necessity. Another important phenomenon
which arises in these singular cases is that the nonevolving monodromy data, which continue
to exist, lose their the most important property – their unambiguous characterization of the
solution.

The solution of these problems arises from our recent observation that one of two linear
integral “evolution equation” forms of the field equations derived in [10] admits a generalization
to the singular case. It is also important that the dynamical monodromy data can still be used
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in this case to characterize the solutions. In this paper we present the generalized linear quasi-
Fredholm integral “evolution equation”, which covers the singular case and opens a direct way
for the construction of solutions for colliding plane waves from given characteristic initial data.
We also briefly discuss some applications.

2 Associated linear system with spectral parameter

We base our construction on the Kinnersley-like overdetermined linear system with a free com-
plex parameter w for a N × N matrix function Ψ(ξ, η, w) whose integrability conditions are
equivalent to the hyperbolic space-time symmetry reduction for N = 2 of the vacuum Einstein
equations and for N = 3 of the electrovacuum Einstein–Maxwell equations –{

2i(w − ξ)∂ξΨ = U(ξ, η)Ψ, rankU = 1, trU = i,
2i(w − η)∂ηΨ = V(ξ, η)Ψ, rankV = 1, trV = i

in which the null coordinates ξ, η are certain linear combinations of geometrically defined nonnull
coordinates mentioned in the introduction. These equations must be supplemented with the
additional constraints on its matrix integral [7, 9]{

Ψ† W Ψ = W0(w),
W†

0(w) = W0(w),
∂W
∂w

= 4iΩ

where † denotes Hermitian conjugation (W†
0(w) ≡ WT

0 (w)) and Ω is a constant matrix. For
N = 2, 3, the only nonzero components of Ω are Ω12 = 1 and Ω21 = −1. For N = 3,
the condition W33 = 1 should be also satisfied. The real null coordinates ξ, η are certain
linear combinations of geometrically defined nonnull coordinates, say α, β, mentioned in the
introduction.

For any solution of these conditions, the components of U, V and W can be identified with
certain metric components and the electromagnetic potential and their derivatives. Without loss
of generality, we impose the normalization conditions at the point denoted by (ξ×, η×) at which
the waves collide. These are Ψ(ξ×, η×, w) = I and W0(w) = 4i(w − β×)Ω + diag (4α2

×, 4, 1),
where α× = (ξ× − η×)/2 and β× = (ξ× + η×)/2. A shift of origin and a rescaling of the
coordinates ξ and η allow us to specify below ξ× = 1 and η× = −1, so that α× = 1, β× = 0.

3 The colliding plane wave problem

For plane gravitational or gravitational and electromagnetic waves with distinct wavefronts
which collide in a Minkowski background, it is well known [1] that there exist global null coordi-
nates (u, v) such that the O’Brien-Singe matching conditions imposed on the wavefronts u = 0
and v = 0 lead to a well posed characteristic initial value problem. However, the regularity of
this problem in these global coordinates in the interaction region (u ≥ 0, v ≥ 0) implies special
relations between these coordinates and the coordinates (ξ, η) which are nonanalytical on the
boundaries. It is possible to use the coordinate freedom to put

ξ = 1 − 2un+ , η = −1 + 2vn− ,

where n± ≥ 2 are specified as part of the initial data. Thus, the important specific of this
characteristic initial value problem is that, in terms of geometrically defined coordinates (ξ, η),
the first derivatives of the field components should be discontinuous and even unbounded on the
wavefronts and at the point of collision.
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4 The analytical structure of Ψ on the spectral plane

Everywhere below, Ψ denotes the fundamental solution of the associated linear system described
above which is normalized at the point of collision (u = 0, v = 0, i.e. (ξ = 1, η = −1). As in the
regular case [7, 9], the structure of the coefficients of the associated linear system for Ψ implies
that the normalized fundamental solution Ψ(ξ, η, w) and its inverse possess four branch points
on the spectral plane w, namely at w = ξ, w = η, w = 1 and w = −1. The order of these points
and our choice of the cuts L± joining them are indicated in the figure

L− L+

−1 η ξ 1

Near these singular points, and on the cuts L±, the components of Ψ and its inverse (as functions
of w for given u ≥ 0 and v≥ 0) possess in general the local structure:

Ψ(ξ, η, w) = ψ̃±(ξ, η, w) ⊗ k±(w) + M±(ξ, η, w)

where, as in the regular case, the coordinate independent components of the row vectors k±(w)
constitute the “projective vectors” of the monodromy data. Their components, as well as the
components of the matrices M±(ξ, η, w), are regular (holomorphic) on the cuts L± with the
corresponding index. In the analytical case we always have ψ̃+(ξ, η, w) =

√
w−1
w−ξψ+(ξ, η, w) and

ψ̃−(ξ, η, w) =
√

w+1
w−ηψ−(ξ, η, w) where the vectors ψ+ and ψ− are holomorphic on the cuts L+

and L− respectively. In the general case, the components of the column vectors ψ̃±(ξ, η, w) also
have branch points at the endpoints of the corresponding cuts L±, but the character of their
singularities at the points w = 1 and w = −1 respectively (as well as the powers n+ and n−
defined above) are determined by the initial data.

5 The integral “evolution” equations and the solution of the
problem

To set up the characteristic initial value problem, we introduce two matrix functions which
are the normalized fundamental solutions of the linear ordinary differential equations – the
restrictions of the associated linear system to the characteristics ξ = 1 and η = −1:

2i(w − ξ)∂ξΨ+ = U(ξ,−1) · Ψ+, Ψ+(1, w) = I
2i(w − η)∂ηΨ− = V(1, η) · Ψ−, Ψ−(−1, w) = I

in which the coefficients are determined by the initial data for the fields on the corresponding
characteristics. These matrices should be the characteristic initial data for the required solution
for Ψ(ξ, η, w):

Ψ+(ξ, w) ≡ Ψ(ξ,−1, w), Ψ−(η, w) ≡ Ψ(1, η, w)

The analytical structures of Ψ± on the spectral plane are very similar to those of Ψ. Namely,
Ψ±(w = ∞) = I, Ψ+ is holomorphic outside L+ and Ψ− outside L−, and their local structures
on these cuts are given by

L+ : Ψ+(ξ, w) = ψ̃ 0+(ξ, w) ⊗ k+(w) + M0+(ξ, w),
L− : Ψ−(η, w) = ψ̃ 0−(η, w) ⊗ k−(w) + M0−(η, w)

where k±(w) are the same as for Ψ, and M0+(ξ, w) and M0−(η, w) are holomorphic on L+ and
L− respectively.

We now introduce, in analogy with the regular case [10], the “evolution” or “scattering”
matrices χ±(ξ, η, w), representing Ψ(ξ, η, w) in two alternative forms

Ψ(ξ, η, w) = χ+(ξ, η, w) · Ψ+(ξ, w)
Ψ(ξ, η, w) = χ−(ξ, η, w) · Ψ−(η, w).
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The crucial point is that the components of the matrix χ+(ξ, η, w) are holomorphic on L+ and
possess a jump on L− only, while the components of the matrix χ−(ξ, η, w) are holomorphic on
L− and possess a jump on L+. From the above it is clear also, that these jumps are represented
by highly degenerate matrices and that χ±(ξ, η, w = ∞) = I. These properties permit us to
represent χ± as Cauchy integrals of the form

χ+(ξ, η, w) = I +
1
πi

∫
L−

[ψ̃−]ζ− ⊗ m−(ξ, ζ−)
w − ζ−

dζ−

χ−(ξ, η, w) = I +
1
πi

∫
L+

[ψ̃+]ζ+ ⊗ m+(ξ, ζ+)
w − ζ+

dζ+

where [. . .] is the jump (a half of the difference between the left and right limits) of a function
on a cut and

m−(ξ, w) = k−(w) · Ψ−1
+ (ξ, w)

m+(η, w) = k+(w) · Ψ−1
− (η, w)

represent a new (evolving) kind of monodromy data introduced for the regular case in [10] and
called there the “dynamical” monodromy data. It is necessary to note here our conjecture of
the convergency of the Cauchy integrals for χ± at w = −1 and w = 1 respectively which is
confirmed for particular examples for any n± ≥ 2.

The above alternative representations for Ψ should satisfy an obvious condition χ+Ψ+ ≡
χ−Ψ−. This condition considered on the cuts L± together with the constructed integral repre-
sentations for χ± leads to the linear integral equations (for brevity we omit here the parametric
dependence of all objects upon ξ and η):

φ+(τ+) −
∫

L−

S+(τ+, ζ−)φ−(ζ−) dζ− = φ 0+(τ+)

φ−(τ−) −
∫

L+

S−(τ−, ζ+)φ+(ζ+) dζ+ = φ 0−(τ−)

where τ+, ζ+ ∈ L+, τ−, ζ− ∈ L− and the vector functions φ+(τ+), φ−(τ−) and their initial
values φ 0+(τ+), φ 0−(τ−) are the jumps [ψ̃+]τ+ , [ψ̃−]τ− and [ψ̃ 0+]τ+ , [ψ̃ 0−]τ− respectively.
The scalar kernels are given by

S+(ξ, τ+, ζ−) =
1

iπ(ζ− − τ+)

(
m−(ξ, ζ−) ·φ 0+(ξ, τ+)

)
S−(η, τ−, ζ+) =

1
iπ(ζ+ − τ−)

(
m+(η, ζ+) ·φ 0−(η, τ−)

)
As in the regular case, the coefficients of the above integral equations are determined by

the initial data. However, these generalized “evolution equations” possess a more complicated
singular structure. They also can be easily decoupled into two independent equations for φ+

and φ−, but we omit these calculations here.
Our construction of solutions for colliding plane waves begins with the constants n± ≥ 2

which determine the degree of non-smoothness of the fields on the wavefronts and the character-
istic initial data for the fields in terms of the Ernst potentials E(u, v), Φ(u, v) which characterise
every solution. These data, viz. E+(u), Φ+(u), E−(v), and Φ−(v), should be chosen to satisfy the
normalization conditions E±(0) = −1, Φ±(0) = 0 and two wavefront regularity conditions [1]:
|E ′

±(0)|2 + 4|Φ′
±(0)|2 = 8(1 − 1/n±). With this data we have to solve the ordinary differential

equations for Ψ± and the integral equations for φ±. The Ernst potentials of the sought-for
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solution can be evaluated then as

E(u, v) = E+(u) + 2
π

∫
L−

(e1 ·φ−(ζ−)) (m−(ζ−) · e2) dζ−

= E−(v) + 2
π

∫
L+

(e1 ·φ+(ζ+)) (m+(ζ+) · e2) dζ+

Φ(u, v) = Φ+(u) − 2
π

∫
L−

(e1 ·φ−(ζ−)) (m−(ζ−) · e3) dζ−

= Φ−(v) − 2
π

∫
L+

(e1 ·φ+(ζ+)) (m+(ζ+) · e3) dζ+

where e1 = {1, 0, 0}, e2 = {0, 1, 0} and e3 = {0, 0, 1}.
As a simple test, we consider n+ = n− = 2 and chose

E+ = −(1 − u)2, E− = −(1 − v)2

For these vacuum data our calculations lead immediately to the Khan–Penrose solution for the
collision of impulsive gravitational waves with colinear polarizations. Similar calculations for
the initial data (δ± are real constants)

E+ = −1 + 2eiδ+u − u2, E− = −1 + 2eiδ−v − v2

give the Nutku–Halil solution for the collision of these waves with noncolinear polarizations.
The initial data

E+ = −1, Φ+ = u, E− = −1, Φ− = v

lead to the Bell–Szekeres solution for the collision of electromagnetic step waves with aligned
polarizations. When the polarizations of these waves is nonaligned, we change the data above
to Φ− = veiγ , (γ is a real constant). This produces

E(u, v) = −1, Φ(u, v) = u
√

1 − v2 + v
√

1 − u2eiγ

which leads to a nontrivial (nondiagonal) metric (see [11]). Clearly, various new solutions can
be found in the same way for different choices of the initial data.
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