3,012 research outputs found

    Multi-metal electrohydrodynamic redox 3d printing at the submicron scale: Microstructure – geometrical gradients – chemical gradients and the resulting mechanical properties

    Get PDF
    An extensive range of metals can be dissolved and re-deposited in liquid solvents using electrochemistry. We harness this concept for additive manufacturing, demonstrating the focused electrohydrodynamic ejection of metal ions dissolved from sacrificial anodes and their subsequent reduction to elemental metals on the substrate. This technique, termed electrohydrodynamic redox printing (EHD-RP), enables the direct, ink-free fabrication of polycrystalline multi-metal 3D structures without the need for post-print processing. On- the-fly switching and mixing of two or more metals printed from a single multichannel nozzle facilitates a chemical feature size of \u3c400 nm with a spatial resolution of 250 nm at printing speeds of up to 10 voxels per second. The additive control of the chemical architecture of materials provided by EHD-RP unlocks the synthesis of 3D bi-metal structures with programmed local properties and opens new avenues for the direct fabrication of chemically architected materials and devices. Mechanical properties can be locally controlled by alloying, dealloying (resulting in controlled porosity) and grain-size tuning via process control. The properties of EHD-RP are put into perspective by comparing with the most prominent current technologies for metal 3D printing at the nanoscale (Fig. 1). Please click Additional Files below to see the full abstract

    Potenziale und Herausforderungen des Smart Stadiums als Testfeld fĂŒr die Smart City

    Get PDF
    Smart Stadiums eigenen sich als Testfeld fĂŒr die Smart City, um die LĂŒcke zwischen der Forschung und der Anwendung von Internet of Things Technologien in der Praxis zu schließen. Gleichzeitig können Stadionbetreiber durch die Monetarisierungspotenziale des Smart Stadium Konzeptes ihre Arena zu einem Profit Center ausbauen. Die Erreichung einer Technologieakzeptanz bei den Zuschauern durch die Schaffung von Synergieeffekten zwischen Stadionbetreibern, Technologieanbietern und der Wissenschaft unter BerĂŒcksichtigung der kulturellen Besonderheiten im jeweiligen Markt kann dabei als kritischer Erfolgsfaktor fĂŒr die Nutzengenerierung der verschiedenen Stakeholder eines Smart Stadiums angesehen werden

    Atypical language organization following perinatal infarctions of the left hemisphere is associated with structural changes in right-hemispheric grey matter.

    Get PDF
    AIM To assess how atypical language organization after early left-hemispheric brain lesions affects grey matter in the contralesional hemisphere. METHOD This was a cross-sectional study with between-group comparisons of 14 patients (six female, 8-26 years) with perinatal left-hemispheric brain lesions (two arterial ischemic strokes, 11 periventricular haemorrhagic infarctions, one without classification) and 14 typically developing age-matched controls (TDC) with functional magnetic resonance imaging (fMRI) documented left-hemispheric language organization (six female, 8-28 years). MRI data were analysed with SPM12, CAT12, and custom scripts. Language lateralization indices were determined by fMRI within a prefrontal mask and right-hemispheric grey matter group differences by voxel-based morphometry (VBM). RESULTS FMRI revealed left-dominance in seven patients with typical language organization (TYP) and right-dominance in seven patients with atypical language organization (ATYP) of 14 patients. VBM analysis of all patients versus controls showed grey matter reductions in the middle temporal gyrus of patients. A comparison between the two patient subgroups revealed an increase of grey matter in the middle frontal gyrus in the ATYP group. Voxel-based regression analysis confirmed that grey matter increases in the middle frontal gyrus were correlated with atypical language organization. INTERPRETATION Compatible with a non-specific lesion effect, we found areas of grey matter reduction in patients as compared to TDC. The grey matter increase in the middle frontal gyrus seems to reflect a specific compensatory effect in patients with atypical language organization

    Short-term high-intensity interval training improves micro- but not macrovascular function in hypertensive patients

    Get PDF
    Arterial hypertension is a global health burden that affects vascular structure and function. Assessment of endothelial function can improve cardiovascular (CV) risk stratification. Exercise treatment reduces over all CV risk and improves vascular health. However, it is still not clear which part of the vascular bed is most sensitive to exercise treatment in patients with CV risk. This study aimed to investigate the effects of an 8-week walking based and supervised high-intensity interval training (HIIT) on macro- and microvascular endothelial function as add-on therapy in patients with arterial hypertension.; Forty patients (mean age 58 ± 7 years) treated for arterial hypertension were randomized in the HIIT (3×/week) or control group (CG) receiving standard physical activity recommendations. Arteriolar (aFID) and venular (vFID) flicker light-induced dilatation for retinal microvascular and flow-mediated dilatation (FMD) for macrovascular endothelial function were assessed. In addition, standardized assessments of patients' characteristics were performed before and after 8 weeks.; Both groups reduced weight and body mass index but only the HIIT group reduced body fat, visceral fat, and increased peak oxygen uptake after 8 weeks. The control group reduced diastolic blood pressure. No blood pressure changes were found in the HIIT group. Arteriolar FID increased in the HIIT group independently of confounders (pre: 2.40 ± 0.98%, post: 3.19 ± 1.31%, p < 0.001) but not in the control group (pre: 3.06 ± 1.50%, post: 2.90 ± 1.46%, p = 0.280). No changes were found for FMD in either group.; Arteriolar FID was found to be a sensitive vascular biomarker to assess exercise-induced microvascular improvements even in a short time setting of an 8-week exercise therapy with HIIT. Short-term exercise training affects microvascular endothelial function but not large artery endothelial function. Thus, retinal aFID appears to be a sensitive biomarker to detect short-term exercise efficacy on a vascular level. Dynamic retinal vessel analysis as a diagnostic approach may prove to be an ideal candidate vascular biomarker to monitor treatment effects of exercise in patients with hypertension on top of standard clinical care and may support clinical decision-making in the future

    2D Simulation von Hochwasserszenarien an der Sihl in der Stadt ZĂŒrich

    Get PDF
    Aufsatz veröffentlicht in: "Wasserbau-Symposium 2021: Wasserbau in Zeiten von Energiewende, GewÀsserschutz und Klimawandel, Zurich, Switzerland, September 15-17, 2021, Band 2" veröffentlicht unter: https://doi.org/10.3929/ethz-b-00049975

    Cardiorespiratory fitness and development of childhood cardiovascular risk: The EXAMIN YOUTH follow-up study

    Get PDF
    Background: Obesity- and hypertension-related cardiovascular (CV) risk has been shown to originate in childhood. Higher body mass index (BMI) and blood pressure (BP) have been associated with increased large artery stiffness and a lower microvascular arteriolar-to-venular diameter ratio (AVR) in children. This study aimed to investigate the association of cardiorespiratory fitness (CRF) with development of BMI, BP and vascular health during childhood.Methods: In our prospective cohort study, 1,171 children aged 6–8 years were screened for CRF, BMI, BP, retinal vessel diameters and pulse wave velocity using standardized protocols. Endurance capacity was assessed by 20 m shuttle run test. After 4 years, all parameters were assessed in 664 children using the same protocols.Results: Children with a higher CRF at baseline developed a significantly lower BMI (ÎČ [95% CI] −0.09 [−0.11 to −0.06] kg/m2, p &lt; 0.001), a lower systolic BP (ÎČ [95% CI] −0.09 [−0.15 to −0.03] mmHg, p = 0.004) and a higher AVR (ÎČ [95% CI] 0.0004 [0.00004 to 0.0007] units, p = 0.027) after 4 years. The indirect association of CRF with development of retinal arteriolar diameters was mediated by changes in BMI.Conclusion: Our results identify CRF as a key modulator for the risk trajectories of BMI, BP and microvascular health in children. Obesity-related CV risk has been shown to track into adulthood, and achieving higher CRF levels in children may help counteract the development of CV risk and disease not only in pediatric populations, but may also help reduce the burden of CVD in adulthood.Registration:http://www.clinicaltrials.gov/ (NCT02853747)

    Polydopamine nanoparticle doped nanofluid for solar thermal energy collector efficiency increase

    Get PDF
    Polydopamine can form black nanoparticles and has recently been gaining attention due to its extraordinary heating properties upon excitation with light. Herein, polydopamine hybrid nanoparticles are synthesized in different sizes and subsequently added to a solar fluid to analyze heating ability. The solar fluids with the differently sized hybrid polydopamine particles are compared to a solar fluid containing food coloring (i.e., micrometer‐sized soot particles, similar to India Ink) and silver nanoparticles. The hybrid polydopamine nanoparticles are found to heat more efficiently than silver nanoparticles or food coloring, respectively. In addition, no hybrid polydopamine nanoparticle deposits are found in the direct absorption solar collector in comparison to the solar fluids doped with silver nanoparticles or food coloring. Thus, this work shows that hybrid polydopamine nanoparticles are promising candidates to increase the efficiency of solar fluids
    • 

    corecore