49 research outputs found

    The Presence of Persistent Bovine Viral Diarrhea Virus Infection and a Novel Bosavirus in a Bison Herd

    Get PDF
    Objective Bovine viral diarrhea virus (BVDV) is a significant pathogen of cattle, leading to losses due to reproductive failure, respiratory disease and immune dysregulation. An investigation was conducted in an American bison (Bison bison) herd dealing with reproductive issues in 2018-2019 calving season to determine likely cause of the losses

    Genomic and evolutionary inferences between American and global strains of porcine epidemic diarrhea virus

    Get PDF
    AbstractPorcine epidemic diarrhea virus (PEDV) has caused severe economic losses both recently in the United States (US) and historically throughout Europe and Asia. Traditionally, analysis of the spike gene has been used to determine phylogenetic relationships between PEDV strains. We determined the complete genomes of 93 PEDV field samples from US swine and analyzed the data in conjunction with complete genome sequences available from GenBank (n=126) to determine the most variable genomic areas. Our results indicate high levels of variation within the ORF1 and spike regions while the C-terminal domains of structural genes were highly conserved. Analysis of the Receptor Binding Domains in the spike gene revealed a limited number of amino acid substitutions in US strains compared to Asian strains. Phylogenetic analysis of the complete genome sequence data revealed high rates of recombination, resulting in differing evolutionary patterns in phylogenies inferred for the spike region versus whole genomes. These finding suggest that significant genetic events outside of the spike region have contributed to the evolution of PEDV

    Characterization of a Novel Influenza Virus in Cattle and Swine: Proposal for a New Genus in the Orthomyxoviridae Family

    Get PDF
    We have recently reported the isolation of a novel virus, provisionally designated C/swine/Oklahoma/1334/2011 (C/OK), with 50% overall homology to human influenza C viruses (ICV), from a pig in Oklahoma. Deep RNA sequencing of C/OK virus found a matrix 1 (M1) protein expression strategy that differed from that of ICV. The novelty of C/OK virus prompted us to investigate whether C/OK virus could exist in a nonswine species. Significantly, we found that C/OK virus was widespread in U.S. bovine herds, as demonstrated by reverse transcription (RT)-PCR and serological assays. Genome sequencing of three bovine viruses isolated from two herds in different states further confirmed these findings. To determine whether swine/bovine C/OK viruses can undergo reassortment with human ICV, and to clarify the taxonomic status of C/OK, in vitro reassortment and serological typing by agar gel immunodiffusion (AGID) were conducted. In vitro reassortment using two human ICV and two swine and bovine C/OK viruses demonstrated that human ICV and C/OK viruses were unable to reassort and produce viable progeny. Antigenically, no cross-recognition of detergent split virions was observed in AGID between human and nonhuman viruses by using polyclonal antibodies that were reactive to cognate antigens. Taken together, these results demonstrate that C/OK virus is genetically and antigenically distinct from ICV. The classification of the new virus in a separate genus of the Orthomyxoviridae family is proposed. The finding of C/OK virus in swine and bovine indicates that this new virus may spread and establish infection in other mammals, including humans

    Piglet Immunization with a Spike Subunit Vaccine Enhances Disease by Porcine Epidemic Diarrhea Virus

    Get PDF
    Immunization with an insect cell lysate/baculovirus mixture containing recombinant porcine epidemic diarrhea virus (PEDV) spike protein induced high levels of neutralizing antibodies in both mice and piglets. However, immunization of piglets with this vaccine resulted in enhancement of disease symptoms and virus replication in vaccine recipients exposed to PEDV challenge. Thus, these observations demonstrate a previously unrecognized challenge of PEDV vaccine research, which has important implications for coronavirus vaccine development

    Phylogenetic Analysis and Characterization of a Sporadic Isolate of Equine Influenza A H3N8 from an Unvaccinated Horse in 2015

    Get PDF
    Equine influenza, caused by the H3N8 subtype, is a highly contagious respiratory disease affecting equid populations worldwide and has led to serious epidemics and transboundary pandemics. This study describes the phylogenetic characterization and replication kinetics of recently-isolated H3N8 virus from a nasal swab obtained from a sporadic case of natural infection in an unvaccinated horse from Montana, USA. The nasal swab tested positive for equine influenza by Real-Time Quantitative Reverse Transcription Polymerase Chain Reaction (RT-PCR). Further, the whole genome sequencing of the virus confirmed that it was the H3N8 subtype and was designated as A/equine/Montana/9564-1/2015 (H3N8). A BLASTn search revealed that the polymerase basic protein 1 (PB1), polymerase acidic (PA), hemagglutinin (HA), nucleoprotein (NP), and matrix (M) segments of this H3N8 isolate shared the highest percentage identity to A/equine/Tennessee/29A/2014 (H3N8) and the polymerase basic protein 2 (PB2), neuraminidase (NA), and non-structural protein (NS) segments to A/equine/Malaysia/M201/2015 (H3N8). Phylogenetic characterization of individual gene segments, using currently available H3N8 viral genomes, of both equine and canine origin, further established that A/equine/Montana/9564-1/2015 belonged to the Florida Clade 1 viruses. Interestingly, replication kinetics of this H3N8 virus, using airway derived primary cells from multiple species, such as equine, swine, bovine, and human lung epithelial cells, demonstrated appreciable titers, when compared to Madin–Darby canine kidney epithelial cells. These findings indicate the broad host spectrum of this virus isolate and suggest the potential for cross-species transmissibility

    Influenza C and D Viruses Demonstrated a Differential Respiratory Tissue Tropism in a Comparative Pathogenesis Study in Guinea Pigs

    Get PDF
    Influenza C virus (ICV) is increasingly associated with community-acquired pneumonia (CAP) in children and its disease severity is worse than the influenza B virus, but similar to influenza A virus associated CAP. Despite the ubiquitous infection landscape of ICV in humans, little is known about its replication and pathobiology in animals. The goal of this study was to understand the replication kinetics, tissue tropism, and pathogenesis of human ICV (huICV) in comparison to the swine influenza D virus (swIDV) in guinea pigs. Intranasal inoculation of both viruses did not cause clinical signs, however, the infected animals shed virus in nasal washes. The huICV replicated in the nasal turbinates, soft palate, and trachea but not in the lungs while swIDV replicated in all four tissues. A comparative analysis of tropism and pathogenesis of these two related seven-segmented influenza viruses revealed that swIDV-infected animals exhibited broad tissue tropism with an increased rate of shedding on 3, 5, and 7 dpi and high viral loads in the lungs compared to huICV. Seroconversion occurred late in the huICV group at 14 dpi, while swIDV-infected animals seroconverted at 7 dpi. Guinea pigs infected with huICV exhibited mild to moderate inflammatory changes in the epithelium of the soft palate and trachea, along with mucosal damage and multifocal alveolitis in the lungs. In summary, the replication kinetics and pathobiological characteristics of ICV in guinea pigs agree with the clinical manifestation of ICV infection in humans, and hence guinea pigs could be used to study these distantly related influenza viruses

    Identification of a Ruminant Origin Group B Rotavirus Associated with Diarrhea Outbreaks in Foals

    Get PDF
    Equine rotavirus group A (ERVA) is one of the most common causes of foal diarrhea. Starting in February 2021, there was an increase in the frequency of severe watery to hemorrhagic diarrhea cases in neonatal foals in Central Kentucky. Diagnostic investigation of fecal samples failed to detect evidence of diarrhea-causing pathogens including ERVA. Based on Illumina-based metagenomic sequencing, we identified a novel equine rotavirus group B (ERVB) in fecal specimens from the affected foals in the absence of any other known enteric pathogens. Interestingly, the protein sequence of all 11 segments had greater than 96% identity with group B rotaviruses previously found in ruminants. Furthermore, phylogenetic analysis demonstrated clustering of the ERVB with group B rotaviruses of caprine and bovine strains from the USA. Subsequent analysis of 33 foal diarrheic samples by RT-qPCR identified 23 rotavirus B-positive cases (69.69%). These observations suggest that the ERVB originated from ruminants and was associated with outbreaks of neonatal foal diarrhea in the 2021 foaling season in Kentucky. Emergence of the ruminant-like group B rotavirus in foals clearly warrants further investigation due to the significant impact of the disease in neonatal foals and its economic impact on the equine industry

    In Vitro Reassortment between Endemic H1N2 and 2009 H1N1 Pandemic Swine Influenza Viruses Generates Attenuated Viruses

    Get PDF
    The pandemic H1N1 (pH1N1) influenza virus was first reported in humans in the spring of 2009 and soon thereafter was identified in numerous species, including swine. Reassortant viruses, presumably arising from the co-infection of pH1N1 and endemic swine influenza virus (SIV), were subsequently identified from diagnostic samples collected from swine. In this study, co-infection of swine testicle (ST) cells with swine-derived endemic H1N2 (MN745) and pH1N1 (MN432) yielded two reassortant H1N2 viruses (R1 and R2), both possessing a matrix gene derived from pH1N1. In ST cells, the reassortant viruses had growth kinetics similar to the parental H1N2 virus and reached titers approximately 2 log10 TCID50/mL higher than the pH1N1 virus, while in A549 cells these viruses had similar growth kinetics. Intranasal challenge of pigs with H1N2, pH1N1, R1 or R2 found that all viruses were capable of infecting and transmitting between direct contact pigs as measured by real time reverse transcription PCR of nasal swabs. Lung samples were also PCR-positive for all challenge groups and influenza-associated microscopic lesions were detected by histology. Interestingly, infectious virus was detected in lung samples for pigs challenged with the parental H1N2 and pH1N1 at levels significantly higher than either reassortant virus despite similar levels of viral RNA. Results of our experiment suggested that the reassortant viruses generated through in vitro cell culture system were attenuated without gaining any selective growth advantage in pigs over the parental lineages. Thus, reassortant influenza viruses described in this study may provide a good system to study genetic basis of the attenuation and its mechanism
    corecore