118 research outputs found

    Response to gefitinib and erlotinib in Non-small cell lung cancer: a retrospective study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In Non-small cell lung cancer (NSCLC), an overactive epidermal growth factor receptor (EGFR) pathway is a component of the malignant phenotype. Two tyrosine kinase inhibitors (TKIs) of EGFR, gefinitib and erlotinib, have been used with variable benefit.</p> <p>Methods</p> <p>We have analyzed outcome data of a population of NSCLC patients that received these TKIs to determine the benefit derived and to define the clinical and molecular parameters that correlate with response. Tumor tissue from a subgroup of these patients was analyzed by immunohistochemistry to measure the expression level of EGFR and four activated (phosphorylated) members of the pathway, pEGFR, pERK, pAKT, and pSTAT3.</p> <p>Results</p> <p>Erlotinib was slightly superior to gefitinib in all measures of response, although the differences were not statistically significant. The most robust clinical predictors of time to progression (TTP) were best response and rash (p < 0.0001). A higher level of pEGFR was associated with longer TTP, while the total EGFR level was not associated with response. Higher levels of pAKT and pSTAT3 were also associated with longer TTP. In contrast, a higher level of pERK1/2 was associated with shorter TTP.</p> <p>Conclusion</p> <p>These observations suggest the hypothesis that tumor cells that have activated EGFR pathways, presumably being utilized for survival, are clinically relevant targets for pathway inhibition. An accurate molecular predictive model of TKI response should include activated members of the EGFR pathway. TKIs may be best reserved for tumors expressing pEGFR and pAKT or pSTAT, and little pERK. In the absence of molecular predictors of response, the appearance of a rash and a positive first scan are good clinical indicators of response.</p

    Evaluation of safety and efficacy of gefitinib ('iressa', zd1839) as monotherapy in a series of Chinese patients with advanced non-small-cell lung cancer: experience from a compassionate-use programme

    Get PDF
    BACKGROUND: The gefitinib compassionate-use programme has enabled >39,000 patients worldwide to receive gefitinib ('Iressa', ZD1839) treatment. This paper reports the outcome of gefitinib treatment in Chinese patients who enrolled into the 'Iressa' Expanded Access Programme (EAP) at the Peking Union Medical College Hospital. METHODS: Thirty-one patients with advanced or metastatic non-small-cell lung cancer (NSCLC) that had progressed after prior systemic chemotherapy were eligible to receive oral gefitinib 250 mg/day as part of the EAP. Treatment was continued until disease progression or unacceptable toxicity occurred. The impact of treatment on disease-related symptoms and quality of life (QoL) was evaluated with the Chinese versions of European Organization for Research and Treatment of Cancer Quality of Life Questionnaires (EORTC QLQ-C30 and QLQ-LC13). RESULTS: Gefitinib was well tolerated. Adverse events (AEs) were generally mild (grade1 and 2) and reversible. The most frequent AEs were acneform rash and diarrhoea. Only one patient withdrew from the study due to a drug-related AE. The objective tumour response rate was 35.5% (95% confidence interval [CI]: 18.6–52.3); median progression-free survival was 5.5 months (95% CI, 1.6 to 9.4); median overall survival was 11.5 months (95% CI, 5.6 to 17.3). The QoL response rates for five functioning scales and global QoL varied from 56–88%. The main symptom response rates varied from 44–84%. QoL and symptom response were correlated with objective tumour response. CONCLUSION: Gefitinib demonstrated safety and efficacy as monotherapy in this series of Chinese patients with advanced NSCLC and was also associated with remarkable symptom relief and improvement in QoL. Although clinical trials are needed to confirm these positive findings, the data suggest that treatment with gefitinib may be beneficial for some Chinese patients who do not respond to chemotherapy and have poor prognosis

    A phase I, open-label, randomized crossover study to assess the effect of dosing of the MEK 1/2 inhibitor Selumetinib (AZD6244; ARRY-142866) in the presence and absence of food in patients with advanced solid tumors

    Get PDF
    &lt;p&gt;&lt;b&gt;Purpose:&lt;/b&gt; This Phase I study assessed whether food influences the rate and extent of selumetinib absorption in patients with advanced solid malignancies and determined the safety, tolerability, and pharmacokinetic (PK) profile of selumetinib and its active metabolite N-desmethyl-selumetinib in fed and fasted states.&lt;/p&gt; &lt;p&gt;&lt;b&gt;Methods:&lt;/b&gt; A single dose of 75 mg selumetinib was to be taken with food on Day 1 followed by a single dose of 75 mg after fasting for at least 10 h on Day 8, or vice versa, followed by twice daily dosing of 75 mg selumetinib from Day 10. Plasma concentrations and PK parameters were determined on Days 1 and 8. Patients could continue to receive selumetinib for as long as they benefitted from treatment.&lt;/p&gt; &lt;p&gt;&lt;b&gt;Results:&lt;/b&gt; In total, 31 patients were randomized to receive selumetinib; 15 to fed/fasted sequence and 16 to fasted/fed sequence. Comprehensive PK sampling was performed on 11 and 10 patients, respectively. The geometric least-squares means of C&lt;sub&gt;max&lt;/sub&gt; and AUC for selumetinib were reduced by 62% (ratio 0.38 90% CI 0.29, 0.50) and 19% (ratio 0.81 90% CI 0.74, 0.88), respectively, under fed compared with fasting conditions. The rate of absorption (t&lt;sub&gt;max&lt;/sub&gt;) of selumetinib (fed) was delayed by approximately 2.5 h (median). The food effect was also observed for the active metabolite N-desmethyl-selumetinib. Selumetinib was well tolerated.&lt;/p&gt; &lt;p&gt;&lt;b&gt;Conclusions:&lt;/b&gt; The presence of food decreased the extent of absorption of selumetinib. It is recommended that for further clinical studies, selumetinib be taken on an empty stomach. Selumetinib demonstrated an acceptable safety profile in the advanced cancer population.&lt;/p&gt

    Therapeutic effects of STAT3 decoy oligodeoxynucleotide on human lung cancer in xenograft mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Signal transducer and activator of transcription 3 (STAT3) is usually constitutively activated in a variety of malignancies. Therefore, STAT3 may be a promising target for treatment of tumor cells. To explore the possibility of a double-stranded decoy oligodeoxynucleotide (ODN) targeted blocking STAT3 over-activated tumor cells, we, here, evaluate the efficacy of STAT3 decoy ODN on human lung cancer cells <it>in vitro </it>and <it>in vivo</it>.</p> <p>Methods</p> <p>A STAT3 decoy ODN was transfected into A549 lung cancer cell line <it>in vitro </it>by using lipofectamine. The flow cytometry and fluorescent microscopy were used to detect the transfection efficiency and the sub-cellular localization of STAT3 decoy ODN in A549 cells. Cell proliferation was determined by counting cell numbers and [<sup>3</sup>H]-thymidine uptake. Cell apoptosis was examined with Annexin V and propidum iodide by flow cytometry. The expression levels of STAT3 target genes were identified by RT-PCR and immunoblot. For <it>in vivo </it>experiment, A549 lung carcinoma-nude mice xenograft was used as a model to examine the effect of the STAT3 decoy by intratumoral injection. At the end of treatment, TUNEL and immunohistochemistry were used to examine the apoptosis and the expression levels of bcl-xl and cyclin D1 in tumor tissues.</p> <p>Results</p> <p>STAT3 decoy ODN was effectively transfected into A549 lung cancer cells and mainly located in nucleus. STAT3-decoy ODN significantly induced apoptosis and reduced [<sup>3</sup>H]-thymidine incorporation of A549 cells as well as down-regulated STAT3-target genes <it>in vitro</it>. STAT3 decoy ODN also dramatically inhibited the lung tumor growth in xenografted nude mice and decreased gene expression of bcl-xl and cyclin D1.</p> <p>Conclusion</p> <p>STAT3 decoy ODN significantly suppressed lung cancer cells <it>in vitro </it>and <it>in vivo</it>, indicating that STAT3 decoy ODN may be a potential therapeutic approach for treatment of lung cancer.</p

    STAT3 can be activated through paracrine signaling in breast epithelial cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many cancers, including breast cancer, have been identified with increased levels of phosphorylated or the active form of Signal Transducers and Activators of Transcription 3 (STAT3) protein. However, whether the tumor microenvironment plays a role in this activation is still poorly understood.</p> <p>Methods</p> <p>Conditioned media, which contains soluble factors from MDA-MB-231 and MDA-MB-468 breast cancer cells and breast cancer associated fibroblasts, was added to MCF-10A breast epithelial and MDA-MB-453 breast cancer cells. The stimulation of phosphorylated STAT3 (p-STAT3) levels by conditioned media was assayed by Western blot in the presence or absence of neutralized IL-6 antibody, or a JAK/STAT3 inhibitor, JSI-124. The stimulation of cell proliferation in MCF-10A cells by conditioned media in the presence or absence of JSI-124 was subjected to MTT analysis. IL-6, IL-10, and VEGF levels were determined by ELISA analysis.</p> <p>Results</p> <p>Our results demonstrated that conditioned media from cell lines with constitutively active STAT3 are sufficient to induce p-STAT3 levels in various recipients that do not possess elevated p-STAT3 levels. This signaling occurs through the JAK/STAT3 pathway, leading to STAT3 phosphorylation as early as 30 minutes and is persistent for at least 24 hours. ELISA analysis confirmed a correlation between elevated levels of IL-6 production and p-STAT3. Neutralization of the IL-6 ligand or gp130 was sufficient to block increased levels of p-STAT3 (Y705) in treated cells. Furthermore, soluble factors within the MDA-MB-231 conditioned media were also sufficient to stimulate an increase in IL-6 production from MCF-10A cells.</p> <p>Conclusion</p> <p>These results demonstrate STAT3 phosphorylation in breast epithelial cells can be stimulated by paracrine signaling through soluble factors from both breast cancer cells and breast cancer associated fibroblasts with elevated STAT3 phosphorylation. The induction of STAT3 phosphorylation is through the IL-6/JAK pathway and appears to be associated with cell proliferation. Understanding how IL-6 and other soluble factors may lead to STAT3 activation via the tumor microenvironment will provide new therapeutic regimens for breast carcinomas and other cancers with elevated p-STAT3 levels.</p

    Bone Marrow Mononuclear Cells Up-Regulate Toll-Like Receptor Expression and Produce Inflammatory Mediators in Response to Cigarette Smoke Extract

    Get PDF
    Several reports link cigarette smoking with leukemia. However, the effects of cigarette smoke extract (CSE) on bone marrow hematopoiesis remain unknown. The objective of this study was to elucidate the direct effects of cigarette smoke on human bone marrow hematopoiesis and characterize the inflammatory process known to result from cigarette smoking. Bone marrow mononuclear cells (BMCs) from healthy individuals when exposed to CSE had significantly diminished CFU-E, BFU-E and CFU-GM. We found increased nuclear translocation of the NF-κB p65 subunit and, independently, enhanced activation of AKT and ERK1/2. Exposure of BMCs to CSE induced IL-8 and TGF-β1 production, which was dependent on NF-κB and ERK1/2, but not on AKT. CSE treatment had no effect on the release of TNF-α, IL-10, or VEGF. Finally, CSE also had a significant induction of TLR2, TLR3 and TLR4, out of which, the up-regulation of TLR2 and TLR3 was found to be dependent on ERK1/2 and NF-κB activation, but not AKT. These results indicate that CSE profoundly inhibits the growth of erythroid and granulocyte-macrophage progenitors in the bone marrow. Further, CSE modulates NF-κB- and ERK1/2-dependent responses, suggesting that cigarette smoking may impair bone marrow hematopoiesis in vivo as well as induce inflammation, two processes that proceed malignant transformation

    Oleanolic Acid Initiates Apoptosis in Non-Small Cell Lung Cancer Cell Lines and Reduces Metastasis of a B16F10 Melanoma Model In Vivo

    Get PDF
    Drug resistance, a process mediated by multiple mechanisms, is a critical determinant for treating lung cancer. The aim of this study is to determine if oleanolic acid (OA), a pentacyclic triterpene present in several plants, is able to circumvent the mechanisms of drug resistance present in non-small cell lung cancer (NSCLC) cell lines and to induce their death.OA decreased the cell viability of the NSCLC cell lines A459 and H460 despite the presence of active, multidrug-resistant (MDR) MRP1/ABCC1 proteins and the anti-apoptotic proteins Bcl-2 and survivin. These effects are due to apoptosis, as evidenced by the capacity of OA to induce fragmentation of DNA and activate caspase 3. Induction of NSCLC cell death by OA cannot be explained by inhibition of the MDR proteins, since treatment with triterpene had little or no effect on the activity or expression of MRP1. Moreover, treatment with OA had no effect on the expression of the anti-apoptotic protein Bcl-2, but increased the expression of the pro-apoptotic protein Bax, altering the Bcl-2/Bax balance towards a pro-apoptotic profile. OA also decreased the expression of the anti-apoptotic protein survivin. Furthermore, OA decreased the expression of the angiogenic vascular endothelial growth factor (VEGF) and decreased the development of melanoma-induced lung metastasis.Our data provide a significant insight into the antitumoral and antimetastatic activity of OA in NSCLC and suggest that including OA in the NSCLC regimens may help to decrease the number of relapses and reduce the development of metastases

    STAT3 Is Activated by JAK2 Independent of Key Oncogenic Driver Mutations in Non-Small Cell Lung Carcinoma

    Get PDF
    Constitutive activation of STAT3 is a common feature in many solid tumors including non-small cell lung carcinoma (NSCLC). While activation of STAT3 is commonly achieved by somatic mutations to JAK2 in hematologic malignancies, similar mutations are not often found in solid tumors. Previous work has instead suggested that STAT3 activation in solid tumors is more commonly induced by hyperactive growth factor receptors or autocrine cytokine signaling. The interplay between STAT3 activation and other well-characterized oncogenic “driver” mutations in NSCLC has not been fully characterized, though constitutive STAT3 activation has been proposed to play an important role in resistance to various small-molecule therapies that target these oncogenes. In this study we demonstrate that STAT3 is constitutively activated in human NSCLC samples and in a variety of NSCLC lines independent of activating KRAS or tyrosine kinase mutations. We further show that genetic or pharmacologic inhibition of the gp130/JAK2 signaling pathway disrupts activation of STAT3. Interestingly, treatment of NSCLC cells with the JAK1/2 inhibitor ruxolitinib has no effect on cell proliferation and viability in two-dimensional culture, but inhibits growth in soft agar and xenograft assays. These data demonstrate that JAK2/STAT3 signaling operates independent of known driver mutations in NSCLC and plays critical roles in tumor cell behavior that may not be effectively inhibited by drugs that selectively target these driver mutations

    Combined assessment of EGFR pathway-related molecular markers and prognosis of NSCLC patients

    Get PDF
    The purpose of this study is to evaluate the prognostic value of the combined assessment of multiple molecular markers related to the epidermal growth factor receptor (EGFR) pathway in resected non-small cell lung cancer (NSCLC) patients. Tumour specimens of 178 NSCLC patients were collected and analysed for EGFR and KRAS mutation status by DNA sequencing, and for EGFR copy number by fluorescent in situ hybridisation. Tissue microarrays were generated and used to determine the expression of multiple EGFR pathway-related proteins by immunohistochemistry. We analysed the association between each marker and patient prognosis. Univariate analyses for each clinical variable and each molecular marker were performed using Kaplan–Meier curves and log-rank tests. From these results, we selected the variables KRAS mutations and expression of cytoplasmic EGFR, granular pERK, nuclear pSTAT3, cytoplasmic E-cadherin and cytoplasmic pCMET to enter into a Cox proportional hazards model, along with stage as the strongest clinical variable related with prognosis. Of the EGFR-related markers evaluated here, the markers EGFR, pERK, pSTAT3, E-cadherin, pCMET and mutations in KRAS were associated with survival when analysed in combination in our patient cohort, with P=0.00015 as the P-value for a test of the additional impact of markers on prognosis, after taking stage into consideration. Confirmation of the impact of these markers in independent studies will be necessary

    Disruption of STAT3 signaling promotes KRAS induced lung tumorigenesis

    Get PDF
    STAT3 is considered to play an oncogenic role in several malignancies including lung cancer; consequently, targeting STAT3 is currently proposed as therapeutic intervention. Here we demonstrate that STAT3 plays an unexpected tumour-suppressive role in KRAS mutant lung adenocarcinoma (AC). Indeed, lung tissue-specific inactivation of Stat3 in mice results in increased KrasG12D-driven AC initiation and malignant progression leading to markedly reduced survival. Knockdown of STAT3 in xenografted human AC cells increases tumour growth. Clinically, low STAT3 expression levels correlate with poor survival and advanced malignancy in human lung AC patients with smoking history, which are prone to KRAS mutations. Consistently, KRAS mutant lung tumours exhibit reduced STAT3 levels. Mechanistically, we demonstrate that STAT3 controls NF-B-induced IL-8 expression by sequestering NF-B within the cytoplasm, thereby inhibiting IL-8-mediated myeloid tumour infiltration and tumour vascularization and hence tumour progression. These results elucidate a novel STAT3NF-BIL-8 axis in KRAS mutant AC with therapeutic and prognostic relevance.P 25599(VLID)183891
    corecore