3,442 research outputs found

    Fermion-parity duality and energy relaxation in interacting open systems

    Get PDF
    We study the transient heat current out of a confined electron system into a weakly coupled electrode in response to a voltage switch. We show that the decay of the Coulomb interaction energy for this repulsive system exhibits signatures of electron-electron attraction, and is governed by an interaction-independent rate. This can only be understood from a general duality that relates the non-unitary evolution of a quantum system to that of a dual model with inverted energies. Deriving from the fermion-parity superselection postulate, this duality applies to a large class of open systems.Comment: 5 pages + 19 pages of Supplementary Materia

    Biodiversity and Ecosystem Health of the Aldabra Group, Southern Seychelles: Scientific Report to the Government of Seychelles.

    Get PDF
    National Geographic's Pristine Seas project, in collaboration with the government of the Seychelles, the Island Conservation Society (ICS), the Seychelles Islands Foundation (SIF), and the Waitt Foundation, conducted an expedition to explore the poorly known marine environment around these islands. The goals were to assess the biodiversity of the nearshore marine environment and to survey the largely unknown deep sea realm. The data collected contribute to the marine spatial planning of the Seychelles, in particular the creation of large marine reserves

    Clinical update: Heparin-induced thrombocytopenia: An update for the COVID-19 era

    Get PDF
    The increased use of heparin during the current COVID-19 pandemic has highlighted the risk of a rare but potentially serious complication of heparin therapy, viz. heparin-induced thrombocytopenia (HIT). This is a short review on the pharmacology of heparin and its derivatives, and the pathophysiology of HIT. Guidance on laboratory testing for and clinical management of HIT is presented in accordance with international guidelines. There are important similarities and differences between HIT and the new entity of vaccine-induced immune thrombotic thrombocytopenia, also known as thrombosis with thrombocytopenia syndrome, which clinicians need to be aware of

    A Quantitative Theory of Mechanical Unfolding of a Homopolymer Globule

    Full text link
    We propose the quantitative mean-field theory of mechanical unfolding of a globule formed by long flexible homopolymer chain collapsed in poor solvent and subjected to extensional deformation. We demonstrate that depending on the degree of polymerization and solvent quality (quantified by the Flory-Huggins χ\chi parameter) the mechanical unfolding of the collapsed chain may either occur continuously (by passing a sequence of uniformly elongated configurations) or involves intra-molecular micro-phase coexistence of a collapsed and a stretched segment followed by an abrupt unraveling transition. The force-extension curves are obtained and quantitatively compared to our recent results of numerical self-consistent field (SCF) simulations. The phase diagrams for extended homopolymer chains in poor solvent comprising one- and two-phase regions are calculated for different chain length or/and solvent quality.Comment: 24 pages, 18 figure

    Icebergs in the North Atlantic: Modelling circulation changes and glacio-marine deposition

    Get PDF
    In order to investigate meltwater events in the North Atlantic, a simple iceberg generation, drift, and melting routine was implemented in a high-resolution OGCM. Starting from the modelled last glacial state, every 25th day cylindrical model icebergs 300 meters high were released at 32 specific points along the coasts. Icebergs launched at the Barents Shelf margin spread a light meltwater lid over the Norwegian and Greenland Seas, shutting down the deep convection and the anti-clockwise circulation in this area. Due to the constraining ocean circulation, the icebergs produce a tongue of relatively cold and fresh water extending eastward from Hudson Strait that must develop at this location, regardless of iceberg origin. From the total amount of freshwater inferred by the icebergs, the thickness of the deposited IRD could be calculated in dependance of iceberg sediment concentration. In this way, typical extent and thickness of Heinrich layers could be reproduced, running the model for 250 years of steady state with constant iceberg meltwater inflow

    An improved constraint satisfaction adaptive neural network for job-shop scheduling

    Get PDF
    Copyright @ Springer Science + Business Media, LLC 2009This paper presents an improved constraint satisfaction adaptive neural network for job-shop scheduling problems. The neural network is constructed based on the constraint conditions of a job-shop scheduling problem. Its structure and neuron connections can change adaptively according to the real-time constraint satisfaction situations that arise during the solving process. Several heuristics are also integrated within the neural network to enhance its convergence, accelerate its convergence, and improve the quality of the solutions produced. An experimental study based on a set of benchmark job-shop scheduling problems shows that the improved constraint satisfaction adaptive neural network outperforms the original constraint satisfaction adaptive neural network in terms of computational time and the quality of schedules it produces. The neural network approach is also experimentally validated to outperform three classical heuristic algorithms that are widely used as the basis of many state-of-the-art scheduling systems. Hence, it may also be used to construct advanced job-shop scheduling systems.This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/01 and in part by the National Nature Science Fundation of China under Grant 60821063 and National Basic Research Program of China under Grant 2009CB320601

    Restricted Isometries for Partial Random Circulant Matrices

    Get PDF
    In the theory of compressed sensing, restricted isometry analysis has become a standard tool for studying how efficiently a measurement matrix acquires information about sparse and compressible signals. Many recovery algorithms are known to succeed when the restricted isometry constants of the sampling matrix are small. Many potential applications of compressed sensing involve a data-acquisition process that proceeds by convolution with a random pulse followed by (nonrandom) subsampling. At present, the theoretical analysis of this measurement technique is lacking. This paper demonstrates that the ssth order restricted isometry constant is small when the number mm of samples satisfies m≳(slog⁡n)3/2m \gtrsim (s \log n)^{3/2}, where nn is the length of the pulse. This bound improves on previous estimates, which exhibit quadratic scaling
    • 

    corecore