101 research outputs found

    Experimental investigation of taxon-specific response of alkaline phosphatase activity in natural freshwater phytoplankton

    Get PDF
    It is widely accepted that alkaline phosphatase activity (APA) is an efficient indicator of phosphate limitation in freshwater phytoplankton communities. In this study, we investigated whether the response in APA to phosphate limitation differs among the taxa in a mixed phytoplankton assemblage. We used the new enzyme-labeled fluorescence (ELF) technique, which allows microscopic detection of phosphate limitation in individual cells of multiple species. The most prominent findings of this study were that alkaline phosphatase (AP) was induced in many, but not all taxa and that different taxa, as well as different cells within a single taxon, experienced different degrees of phosphate stress under the same environmental conditions. Our approach was to manipulate the limiting nutrient in a natural freshwater phytoplankton community by incubating lake water in the laboratory. We induced nitrogen (N) or phosphate limitation through additions of inorganic nutrients. Both the ELF assay and bulk APA indicated that the lake phytoplankton were not phosphate limited at the start of the experiment. During the experiment, several chlorophyte taxa (e.g., Eudorina and an unidentified solitary spiny coccoid) were driven to phosphate limitation when inorganic N was added, as evidenced by a higher percentage of ELF-labeled cells relative to controls, whereas other chlorophyte taxa such as Actinastrum and Dicryosphaerium were not phosphate stressed under these conditions. In the phosphate-limited treatments, little or no ELF labeling was observed in any cyanobacterial taxa. Furthermore, all taxa observed after the ELF labeling procedure (>10-mum fraction) were labeled with ELF at least on one occasion, demonstrating the wide applicability of the ELF method. By using ELF labeling in tandem with bulk APA, the resolution and analysis of phosphate limitation was increased, allowing the identification of specific phosphate-stressed taxa

    Amazon deforestation alters small stream structure, nitrogen biogeochemistry and connectivity to larger rivers

    Get PDF
    Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Biogeochemistry 105 (2011): 53-74, doi:10.1007/s10533-010-9540-4.Human activities that modify land cover can alter the structure and biogeochemistry of small streams but these effects are poorly known over large regions of the humid tropics where rates of forest clearing are high. We examined how conversion of Amazon lowland tropical forest to cattle pasture influenced the physical and chemical structure, organic matter stocks and N cycling of small streams. We combined a regional ground survey of small streams with an intensive study of nutrient cycling using 15N additions in three representative streams: a second-order forest stream, a second-order pasture stream and a third-order pasture stream that were within several km of each other and on similar soils and landscape positions. Replacement of forest with pasture decreased stream habitat complexity by changing streams from run and pool channels with forest leaf detritus (50% cover) to grass-filled (63% cover) channel with runs of slow-moving water. In the survey, pasture streams consistently had lower concentrations of dissolved oxygen and nitrate (NO3-) compared with similar-sized forest streams. Stable isotope additions revealed that second-order pasture stream had a shorter NH4+ uptake length, higher uptake rates into organic matter components and a shorter 15NH4+ residence time than the second-order forest stream or the third-order pasture stream. Nitrification was significant in the forest stream (19% of the added 15NH4+) but not in the second-order pasture (0%) or third-order (6%) pasture stream. The forest stream retained 7% of added 15N in organic matter compartments and exported 53% (15NH4+ =34%; 15NO3- = 19%). In contrast, the second-order pasture stream retained 75% of added 15N, predominantly in grasses (69%) and exported only 4% as 15NH4+. The fate of tracer 15N in the third-order pasture stream more closely resembled that in the forest stream, with 5% of added N retained and 26% exported (15NH4+ = 9%; 15NO3- = 6%). These findings indicate that the widespread infilling by grass in small streams in areas deforested for pasture greatly increases the retention of inorganic N in the first- and second-order streams, which make up roughly three-fourths of total stream channel length in Amazon basin watersheds. The importance of this phenomenon and its effect on N transport to larger rivers across the larger areas of the Amazon Basin will depend on better evaluation of both the extent and the scale at which stream infilling by grass occurs, but our analysis suggests the phenomenon is widespread.This work was supported by grants from the NASA Large-Scale Biosphere and Atmosphere Experiment (NCC5-686), the National Science Foundation (DEB-0315656) and the Fundação de Ámparo à Pesquisa do Estado de São Paulo

    Electrospray Ionization with High-Resolution Mass Spectrometry as a Tool for Lignomics: Lignin Mass Spectrum Deconvolution

    Get PDF
    Capability to characterize lignin, lignocellulose, and their degradation products is essential for development of new renewable feedstocks. Electrospray ionization high-resolution time-offlight mass spectrometry (ESI HR TOF MS) method was developed expanding the lignomics toolkit while targeting the simultaneous detection of low and high molecular weight (MW) lignin species. The effect of a broad range of electrolytes and various ionization conditions on ion formation and ionization effectiveness was studied using a suite of mono-, di- and triarene lignin model compounds as well as intact lignin. Contrary to the previous studies, the positive ionization mode was found to be more effective for methoxy-substituted arenes and polyphenols, i.e., species of a broadly varied MW structurally similar to the native lignin. For the first time, we report an effective formation of multiply charged species of lignin with the subsequent mass spectrum deconvolution in the presence of 100 mmol·L-1 formic acid in the positive ESI mode. The developed method enabled the detection of lignin species with an MW between 150 and 9,000 Da or higher, depending on the mass analyzer. The obtained Mn and Mw values of 1,500 and 2,500 Da, respectively, were in good agreement with those determined by gel permeation chromatography. Furthermore, the deconvoluted ESI mass spectrum was similar to that obtained with matrixassisted laser desorption/ionization (MALDI) TOF MS, yet featuring a higher signal-to-noise ratio. The formation of multiply charged species was confirmed with ESI ion mobility HR Q-TOF MS

    SPPS783716_suppl_mat - How Gender Identity and Transgender Status Affect Perceptions of Attractiveness

    No full text
    <p>SPPS783716_suppl_mat for How Gender Identity and Transgender Status Affect Perceptions of Attractiveness by Jessica M. Mao, M. L. Haupert, and Eliot R. Smith in Social Psychological and Personality Science</p

    Towards Flexibility in Future Industrial Manufacturing: A Global Framework for Self-organization of Production Cells

    Get PDF
    Conference of 7th International Conference on Ambient Systems, Networks and Technologies, ANT 2016 and the 6th International Conference on Sustainable Energy Information Technology, SEIT 2016 ; Conference Date: 23 May 2016 Through 26 May 2016; Conference Code:121607International audienceThe future of manufacturing leads to flexible industrial facilities in which production lines or systems are composed by several production cells. Production cells can be reorganized and reconfigured by introducing new devices, equipment, functionalities or even by re-configuring the communication network. In this context, machine-to-machine communication does not only provide a transport layer for monitoring and control, but also provide a high-level distributed service framework and data management system. In this contribution, the authors address the challenge to manage the self-organization of production cells by means of a global framework. This framework bases on the following technologies: RobotML for the scenario description, OPC UA for service orchestration, object memories for distributed data sharing, Frama-C/Para-C for code verification and SDN for network reconfiguration. This framework has been deployed within a use case involving the SYBOT collaborative robot and a reconfigurable Raspberry-Pi based camera to enhance human operator safety. Experiments show that from a high-level description of the scenario, it was possible to automatically orchestrate at the OPC UA level the different reconfigurations of the production cell
    corecore