513 research outputs found

    Atomic Beams

    Get PDF
    Contains reports on two research projects

    Children over‐imitate adults and peers more than puppets (advance online)

    Get PDF
    Researchers commonly use puppets in development science. Amongst other things,puppets are employed to reduce social hierarchies between child participants andadult experimenters akin to peer interactions. However, it remains controversialwhether children treat puppets like real-world social partners in these settings.This study investigated children’s imitation of causally irrelevant actions (i.e., over-imitation) performed by puppet, adult, or child models. Seventy-two German children(AgeRange =4.6–6.5 years; 36 girls) from urban, socioeconomically diverse backgroundsobserved a model retrieving stickers from reward containers. The model performedcausally irrelevant actions either in contact with the reward container or not. Childrenwere more likely to over-imitate adults’ and peers’ actions as compared to puppets’actions. Across models, they copied contact actions more than no-contact actions.While children imitate causally irrelevant actions from puppet models to some extent,their social learning from puppets does not necessarily match their social learning fromreal-world social agents, such as children or adults

    Priming third-party social exclusion does not elicit children's inclusion of out-group members

    Get PDF
    This study investigates how culture and priming 3- to 7-year-old children (N = 186) with third-party social exclusion affects their subsequent inclusion of out-group members. Children in societies that tend to value social independence (Germany, New Zealand) and interdependence (Northern Cyprus) were randomly assigned to minimal groups. Next, they watched video stimuli depicting third-party social exclusion (exclusion condition) or neutral content (control condition). We assessed children's recognition of the social exclusion expressed in the priming videos and their understanding of the emotional consequences thereof. We furthermore assessed children's inclusion behaviour in a ball-tossing game in which participants could include an out-group agent into an in-group interplay. Children across societies detected third-party social exclusion and ascribed lower mood to excluded than non-excluded protagonists. Children from Germany and New Zealand were more likely to include the out-group agent into the in-group interaction than children from Northern Cyprus. Children's social inclusion remained unaffected by their exposure to third-party social exclusion primes. These results suggest that children from diverse societies recognize social exclusion and correctly forecast its negative emotional consequences, but raise doubt on the notion that social exclusion exposure affects subsequent social inclusion

    Superparaelectric phase in the ensemble of non-interacting ferroelectric nanoparticles

    Full text link
    For the first time we predict the conditions of superparaelectric phase appearance in the ensemble of non-interacting spherical ferroelectric nanoparticles. The superparaelectricity in nanoparticle was defined by analogy with superparamagnetism, obtained earlier in small nanoparticles made of paramagnetic material. Calculations of correlation radius, energetic barriers of polarization reorientation and polarization response to external electric field, were performed within Landau-Ginzburg phenomenological approach for perovskites Pb(Zr,Ti)O3, BiFeO3 and uniaxial ferroelectrics rochelle salt and triglycine sulfate.Comment: 28 pages, 7 figures, 3 Appendices, to be submitted to Phys. Rev.

    Origin of the high piezoelectric response in PbZr(1-x)TixO3

    Full text link
    High resolution x-ray powder diffraction measurements on poled PbZr(1-x)TixO3 (PZT) ceramic samples close to the rhombohedral-tetragonal phase boundary (the so-called morphotropic phase boundary, MPB) have shown that for both rhombohedral and tetragonal compositions, the piezoelectric elongation of the unit cell does not occur along the polar directions but along those directions associated with the monoclinic distortion. This work provides the first direct evidence for the origin of the very high piezoelectricity in PZT.Comment: 4 pages, 4 EPS figures embedded. More specific title and abstract. To appear in Phys. Rev. Let

    Thermodynamics of nanodomain formation and breakdown in Scanning Probe Microscopy: Landau-Ginzburg-Devonshire approach

    Full text link
    Thermodynamics of tip-induced nanodomain formation in scanning probe microscopy of ferroelectric films and crystals is studied using the Landau-Ginzburg-Devonshire phenomenological approach. The local redistribution of polarization induced by the biased probe apex is analyzed including the effects of polarization gradients, field dependence of dielectric properties, intrinsic domain wall width, and film thickness. The polarization distribution inside subcritical nucleus of the domain preceding the nucleation event is very smooth and localized below the probe, and the electrostatic field distribution is dominated by the tip. In contrast, polarization distribution inside the stable domain is rectangular-like, and the associated electrostatic fields clearly illustrate the presence of tip-induced and depolarization field components. The calculated coercive biases of domain formation are in a good agreement with available experimental results for typical ferroelectric materials. The microscopic origin of the observed domain tip elongation in the region where the probe electric field is much smaller than the intrinsic coercive field is the positive depolarization field in front of the moving counter domain wall. For infinitely thin domain walls local domain breakdown through the sample depth appears. The results obtained here are complementary to the Landauer-Molotskii energetic approach.Comment: 35 pages, 8 figures, suplementary attached, to be submitted to Phys. Rev.

    Phenomenological theory of phase transitions in highly piezoelectric perovskites

    Full text link
    Recently discovered fine structure of the morphotropic phase boundaries in highly piezoelectric mixture compounds PZT, PMN-PT, and PZN-PT demonstrates the importance of highly non-linear interactions in these systems. We show that an adequate Landau-type description of the ferroelectric phase transitions in these compounds is achieved by the use of a twelfth-order expansion of the Landau potential in terms of the phenomenological order parameter. Group-theoretical and catastrophe-theory methods are used in constructing the appropriate Landau potential. A complete phase diagram is calculated in phenomenological parameter space. The theory describes both PZT and PZN-PT types of phase diagrams, including the newly found monoclinic and orthorhombic phases. Anomalously large piezoelectric coefficients are predicted in the vicinity of the phase transition lines.Comment: RevTex4, 8 pages, 2 figures. Dramatically changed after referees' Comments, to appear in Phys. Rev. B, 1 April 200

    Influence of long-range dipolar interactions on the phase stability and hysteresis shapes of ferroelectric and antiferroelectric multilayers

    Get PDF
    Phase transition and field driven hysteresis evolution of a two-dimensional Ising grid consisting of ferroelectric-antiferroelectric multilayers that take into account the long range dipolar interactions were simulated by a Monte-Carlo method. Simulations were carried out for a 1+1 bilayer and a 5+5 superlattice. Phase stabilities of components comprising the structures with an electrostatic-like coupling term were also studied. An electrostatic-like coupling, in the absence of an applied field, can drive the ferroelectric layers towards 180Âș domains with very flat domain interfaces mainly due to the competition between this term and the dipole-dipole interaction. The antiferroelectric layers do not undergo an antiferroelectric-to-ferroelectric transition under the influence of an electrostatic-like coupling between layers as the ferroelectric layer splits into periodic domains at the expense of the domain wall energy. The long-range interactions become significant near the interfaces. For high periodicity structures with several interfaces, the interlayer long-range interactions substantially impact the configuration of the ferroelectric layers while the antiferroelectric layers remain quite stable unless these layers are near the Neel temperature. In systems investigated with several interfaces, the hysteresis loops do not exhibit a clear presence of antiferroelectricity that could be expected in the presence of anti-parallel dipoles, i. e., the switching takes place abruptly. Some recent experimental observations in ferroelectric-antiferroelectric multilayers are discussed where we conclude that the different electrical properties of bilayers and superlattices are not only due to strain effects alone but also long-range interactions. The latter manifests itself particularly in superlattices where layers are periodically exposed to each other at the interfaces

    Theory of structural response to macroscopic electric fields in ferroelectric systems

    Full text link
    We have developed and implemented a formalism for computing the structural response of a periodic insulating system to a homogeneous static electric field within density-functional perturbation theory (DFPT). We consider the thermodynamic potentials E(R,eta,e) and F(R,eta,e) whose minimization with respect to the internal structural parameters R and unit cell strain eta yields the equilibrium structure at fixed electric field e and polarization P, respectively. First-order expansion of E(R,eta,e) in e leads to a useful approximation in which R(P) and eta(P) can be obtained by simply minimizing the zero-field internal energy with respect to structural coordinates subject to the constraint of a fixed spontaneous polarization P. To facilitate this minimization, we formulate a modified DFPT scheme such that the computed derivatives of the polarization are consistent with the discretized form of the Berry-phase expression. We then describe the application of this approach to several problems associated with bulk and short-period superlattice structures of ferroelectric materials such as BaTiO3 and PbTiO3. These include the effects of compositionally broken inversion symmetry, the equilibrium structure for high values of polarization, field-induced structural phase transitions, and the lattice contributions to the linear and the non-linear dielectric constants.Comment: 19 pages, with 15 postscript figures embedded. Uses REVTEX4 and epsf macros. Also available at http://www.physics.rutgers.edu/~dhv/preprints/sai_pol/index.htm

    Thermodynamic theory of epitaxial ferroelectric thin films with dense domain structures

    Full text link
    A Landau-Ginsburg-Devonshire-type nonlinear phenomenological theory is presented, which enables the thermodynamic description of dense laminar polydomain states in epitaxial ferroelectric thin films. The theory explicitly takes into account the mechanical substrate effect on the polarizations and lattice strains in dissimilar elastic domains (twins). Numerical calculations are performed for PbTiO3 and BaTiO3 films grown on (001)-oriented cubic substrates. The "misfit strain-temperature" phase diagrams are developed for these films, showing stability ranges of various possible polydomain and single-domain states. Three types of polarization instabilities are revealed for polydomain epitaxial ferroelectric films, which may lead to the formation of new polydomain states forbidden in bulk crystals. The total dielectric and piezoelectric small-signal responses of polydomain films are calculated, resulting from both the volume and domain-wall contributions. For BaTiO3 films, strong dielectric anomalies are predicted at room temperature near special values of the misfit strain.Comment: 19 pages, 8 figure
    • 

    corecore