74 research outputs found

    Estimation of Buttiker-Landauer traversal time based on the visibility of transmission current

    Full text link
    We present a proposal for the estimation of B\"uttiker-Landauer traversal time based on the visibility of transmission current. We analyze the tunneling phenomena with a time-dependent potential and obtain the time-dependent transmission current. We found that the visibility is directly connected to the traversal time. Furthermore, this result is valid not only for rectangular potential barrier but also for general form of potential to which the WKB approximation is applicable . We compared these results with the numerical values obtained from the simulation of Nelson's quantum mechanics. Both of them fit together and it shows our method is very effective to measure experimentally the traversal time.Comment: 12 pages, REVTeX, including 7 eps figure

    Tunneling Time Distribution by means of Nelson's Quantum Mechanics and Wave-Particle Duality

    Get PDF
    We calculate a tunneling time distribution by means of Nelson's quantum mechanics and investigate its statistical properties. The relationship between the average and deviation of tunneling time suggests the exsistence of ``wave-particle duality'' in the tunneling phenomena.Comment: 14 pages including 11 figures, the text has been revise

    Bremsstrahlung radiation by a tunneling particle

    Full text link
    We study the bremsstrahlung radiation of a tunneling charged particle in a time-dependent picture. In particular, we treat the case of bremsstrahlung during alpha-decay, which has been suggested as a promissing tool to investigate the problem of tunneling times. We show deviations of the numerical results from the semiclassical estimates. A standard assumption of a preformed particle inside the well leads to sharp high-frequency lines in the bremsstrahlung emission. These lines correspond to "quantum beats" of the internal part of the wavefunction during tunneling arising from the interference of the neighboring resonances in the well.Comment: 4 pages, 4 figure

    Resonant tunneling of electromagnetic waves through polariton gaps

    Full text link
    We consider resonant tunneling of electromagnetic waves through an optical barrier formed by dielectric layers with the frequency dispersion of their dielectric permiability. The frequency region between lower and upper polariton branches in these materials presents a stop band for electromagnetic waves. We show that resonance tunneling through this kind of barriers is qualitatevely different from tunneling through other kind of optical barriers as well as from quantum mechanic tunneling through a rectangular barrier. We find that the width of the resonance maxima of the transmission coeffcient tends to zero as frequency approach the lower boundary of the stop band in a very sharp non-analytical way. Resonance transmission peaks give rise to new photonic bands inside the stop band if one considers periodical array of the layers.Comment: 8 pages, 5 figure

    The Exact Correspondence between Phase Times and Dwell Times in a Symmetrical Quantum Tunneling Configuration

    Full text link
    The general and explicit relation between the phase time and the dwell time for quantum tunneling or scattering is investigated. Considering a symmetrical collision of two identical wave packets with an one-dimensional barrier, here we demonstrate that these two distinct transit time definitions give connected results where, however, the phase time (group delay) accurately describes the exact position of the scattered particles. The analytical difficulties that arise when the stationary phase method is employed for obtaining phase (traversal) times are all overcome. Multiple wave packet decomposition allows us to recover the exact position of the reflected and transmitted waves in terms of the phase time, which, in addition to the exact relation between the phase time and the dwell time, leads to right interpretation for both of them.Comment: 11 pages, 2 figure

    Anomalous Diffusion in Infinite Horizon Billiards

    Full text link
    We consider the long time dependence for the moments of displacement < |r|^q > of infinite horizon billiards, given a bounded initial distribution of particles. For a variety of billiard models we find ~ t^g(q) (up to factors of log t). The time exponent, g(q), is piecewise linear and equal to q/2 for q2. We discuss the lack of dependence of this result on the initial distribution of particles and resolve apparent discrepancies between this time dependence and a prior result. The lack of dependence on initial distribution follows from a remarkable scaling result that we obtain for the time evolution of the distribution function of the angle of a particle's velocity vector.Comment: 11 pages, 7 figures Submitted to Physical Review

    Equivalence between the real time Feynman histories and the quantum shutter approaches for the "passage time" in tunneling

    Get PDF
    We show the equivalence of the functions Gp(t)G_{\rm p}(t) and Ψ(d,t)2|\Psi(d,t)|^2 for the ``passage time'' in tunneling. The former, obtained within the framework of the real time Feynman histories approach to the tunneling time problem, using the Gell-Mann and Hartle's decoherence functional, and the latter involving an exact analytical solution to the time-dependent Schr\"{o}dinger equation for cutoff initial waves

    Superoscillations and tunneling times

    Get PDF
    It is proposed that superoscillations play an important role in the interferences which give rise to superluminal effects. To exemplify that, we consider a toy model which allows for a wave packet to travel, in zero time and negligible distortion a distance arbitrarily larger than the width of the wave packet. The peak is shown to result from a superoscillatory superposition at the tail. Similar reasoning applies to the dwell time.Comment: 12 page

    Velocity autocorrelation function of a Brownian particle

    Full text link
    In this article, we present molecular dynamics study of the velocity autocorrelation function (VACF) of a Brownian particle. We compare the results of the simulation with the exact analytic predictions for a compressible fluid from [6] and an approximate result combining the predictions from hydrodynamics at short and long times. The physical quantities which determine the decay were determined from separate bulk simulations of the Lennard-Jones fluid at the same thermodynamic state point.We observe that the long-time regime of the VACF compares well the predictions from the macroscopic hydrodynamics, but the intermediate decay is sensitive to the viscoelastic nature of the solvent.Comment: 7 pages, 6 figure

    Simulation of wavepacket tunneling of interacting identical particles

    Full text link
    We demonstrate a new method of simulation of nonstationary quantum processes, considering the tunneling of two {\it interacting identical particles}, represented by wave packets. The used method of quantum molecular dynamics (WMD) is based on the Wigner representation of quantum mechanics. In the context of this method ensembles of classical trajectories are used to solve quantum Wigner-Liouville equation. These classical trajectories obey Hamilton-like equations, where the effective potential consists of the usual classical term and the quantum term, which depends on the Wigner function and its derivatives. The quantum term is calculated using local distribution of trajectories in phase space, therefore classical trajectories are not independent, contrary to classical molecular dynamics. The developed WMD method takes into account the influence of exchange and interaction between particles. The role of direct and exchange interactions in tunneling is analyzed. The tunneling times for interacting particles are calculated.Comment: 11 pages, 3 figure
    corecore