67 research outputs found

    A grid of 1D low-mass star formation collapse models

    Full text link
    The current study was developed to provide a database of relatively simple numerical simulations of protostellar collapse, as a template library for observations of cores and very young protostars, and for researchers who wish to test their chemical modeling under dynamic astrophysical conditions. It was also designed to identify statistical trends that may appear when running many models of the formation of low-mass stars by varying the initial conditions. A large set of 143 calculations of the gravitational collapse of an isolated sphere of gas with uniform temperature and a Bonnor-Ebert like density profile was undertaken using a 1D fully implicit Lagrangian radiation hydrodynamics code. The parameter space covered initial masses from 0.2 to 8 Msun, temperatures of 5-30 K and radii between 3000 and 30,000 AU. A spread in the thermal evolutionary tracks of the runs was found, due to differing initial conditions and optical depths. Within less than an order of magnitude, all first and second Larson cores had masses and radii independent of the initial conditions. The time elapsed between the formation of the first and second cores was found to strongly depend on the first core mass accretion rate, and no first core in our grid of models lived for longer than 2000 years, before the onset of the second collapse. The end product of a protostellar cloud collapse, the second Larson core, is, at birth, a canonical object with a mass and radius of about 3 Mjup and 8 Rjup, independent of its initial conditions. The evolution sequence which brings the gas to stellar densities can however proceed in a variety of scenarios, on different timescales, along different isentropes, but each story line can largely be predicted by the initial conditions. All the data from the simulations are publicly available at this address: http://starformation.hpc.ku.dk/grid-of-protostars.Comment: 24 pages, 14 figures, accepted for publication in A&

    Infall-Driven Protostellar Accretion and the Solution to the Luminosity Problem

    Full text link
    We investigate the role of mass infall in the formation and evolution of protostars. To avoid ad hoc initial and boundary conditions, we consider the infall resulting self-consistently from modeling the formation of stellar clusters in turbulent molecular clouds. We show that infall rates in turbulent clouds are comparable to accretion rates inferred from protostellar luminosities or measured in pre-main-sequence stars. They should not be neglected in modeling the luminosity of protostars and the evolution of disks, even after the embedded protostellar phase. We find large variations of infall rates from protostar to protostar, and large fluctuations during the evolution of individuals protostars. In most cases, the infall rate is initially of order 105^{-5}\msun\ yr1^{-1}, and may either decay rapidly in the formation of low-mass stars, or remain relatively large when more massive stars are formed. The simulation reproduces well the observed characteristic values and scatter of protostellar luminosities and matches the observed protostellar luminosity function. The luminosity problem is therefore solved once realistic protostellar infall histories are accounted for, with no need for extreme accretion episodes. These results are based on a simulation of randomly-driven magneto-hydrodynamic turbulence on a scale of 4pc, including self-gravity, adaptive-mesh refinement to a resolution of 50AU, and accreting sink particles. The simulation yields a low star formation rate, consistent with the observations, and a mass distribution of sink particles consistent with the observed stellar initial mass function during the whole duration of the simulation, forming nearly 1,300 sink particles over 3.2 Myr.Comment: 21 pages, 16 figures, accepted for publication in Ap

    The stellar IMF from Isothermal MHD Turbulence

    Full text link
    We address the turbulent fragmentation scenario for the origin of the stellar initial mass function (IMF), using a large set of numerical simulations of randomly driven supersonic MHD turbulence. The turbulent fragmentation model successfully predicts the main features of the observed stellar IMF assuming an isothermal equation of state without any stellar feedback. As a test of the model, we focus on the case of a magnetized isothermal gas, neglecting stellar feedback, while pursuing a large dynamic range in both space and timescales covering the full spectrum of stellar masses from brown dwarfs to massive stars. Our simulations represent a generic 4 pc region within a typical Galactic molecular cloud, with a mass of 3000 Msun and an rms velocity 10 times the isothermal sound speed and 5 times the average Alfven velocity, in agreement with observations. We achieve a maximum resolution of 50 au and a maximum duration of star formation of 4.0 Myr, forming up to a thousand sink particles whose mass distribution closely matches the observed stellar IMF. A large set of medium-size simulations is used to test the sink particle algorithm, while larger simulations are used to test the numerical convergence of the IMF and the dependence of the IMF turnover on physical parameters predicted by the turbulent fragmentation model. We find a clear trend toward numerical convergence and strong support for the model predictions, including the initial time evolution of the IMF. We conclude that the physics of isothermal MHD turbulence is sufficient to explain the origin of the IMF.Comment: 25 pages, 21 figures, Accepted by Ap

    Protostellar accretion traced with chemistry: Comparing synthetic C18O maps of embedded protostars to real observations

    Full text link
    Context: Understanding how protostars accrete their mass is a central question of star formation. One aspect of this is trying to understand whether the time evolution of accretion rates in deeply embedded objects is best characterised by a smooth decline from early to late stages or by intermittent bursts of high accretion. Aims: We create synthetic observations of deeply embedded protostars in a large numerical simulation of a molecular cloud, which are compared directly to real observations. The goal is to compare episodic accretion events in the simulation to observations and to test the methodology used for analysing the observations. Methods: Simple freeze-out and sublimation chemistry is added to the simulation, and synthetic C18^{18}O line cubes are created for a large number of simulated protostars. The spatial extent of C18^{18}O is measured for the simulated protostars and compared directly to a sample of 16 deeply embedded protostars observed with the Submillimeter Array. If CO is distributed over a larger area than predicted based on the protostellar luminosity, it may indicate that the luminosity has been higher in the past and that CO is still in the process of refreezing. Results: Approximately 1% of the protostars in the simulation show extended C18^{18}O emission, as opposed to approximately 50% in the observations, indicating that the magnitude and frequency of episodic accretion events in the simulation is too low relative to observations. The protostellar accretion rates in the simulation are primarily modulated by infall from the larger scales of the molecular cloud, and do not include any disk physics. The discrepancy between simulation and observations is taken as support for the necessity of disks, even in deeply embedded objects, to produce episodic accretion events of sufficient frequency and amplitude.Comment: Accepted for publication in A&A, 11 pages, 8 figures; v2 contains minor updates to the languag

    Episodic accretion: the interplay of infall and disc instabilities

    Full text link
    Using zoom-simulations carried out with the adaptive mesh-refinement code RAMSES with a dynamic range of up to 2271.34×1082^{27} \approx 1.34 \times 10^8 we investigate the accretion profiles around six stars embedded in different environments inside a (40 pc)3^3 giant molecular cloud, the role of mass infall and disc instabilities on the accretion profile, and thus on the luminosity of the forming protostar. Our results show that the environment in which the protostar is embedded determines the overall accretion profile of the protostar. Infall on to the circumstellar disc may trigger gravitational disc instabilities in the disc at distances of around ~10 to ~50 au leading to rapid transport of angular momentum and strong accretion bursts. These bursts typically last for about ~10 to a ~100 yr, consistent with typical orbital times at the location of the instability, and enhance the luminosity of the protostar. Calculations with the stellar evolution code mesa show that the accretion bursts induce significant changes in the protostellar proper- ties, such as the stellar temperature and radius. We apply the obtained protostellar properties to produce synthetic observables with RADMC3D and predict that accretion bursts lead to ob- servable enhancements around 20 to 200 μ\mum in the spectral energy distribution of Class 0 type young stellar objects.Comment: 17 pages, 14 figures, accepted by MNRA

    Probing the Protosolar Disk Using Dust Filtering at Gaps in the Early Solar System

    Full text link
    Jupiter and Saturn formed early, before the gas disk dispersed. The presence of gap-opening planets affects the dynamics of the gas and embedded solids and halts the inward drift of grains above a certain size. A drift barrier can explain the absence of calcium aluminium rich inclusions (CAIs) in chondrites originating from parent bodies that accreted in the inner solar system. Employing an interdisciplinary approach, we use a μ\mu-X-Ray-fluorescence scanner to search for large CAIs and a scanning electron microscope to search for small CAIs in the ordinary chondrite NWA 5697. We carry out long-term, two-dimensional simulations including gas, dust, and planets to characterize the transport of grains within the viscous α\alpha-disk framework exploring the scenarios of a stand-alone Jupiter, Jupiter and Saturn \textit{in situ}, or Jupiter and Saturn in a 3:2 resonance. In each case, we find a critical grain size above which drift is halted as a function of the physical conditions in the disk. From the laboratory search we find four CAIs with a largest size of \approx200μ\,\mum. \Combining models and data, we provide an estimate for the upper limit of the α\alpha-viscosity and the surface density at the location of Jupiter, using reasonable assumptions about the stellar accretion rate during inward transport of CAIs, and assuming angular momentum transport to happen exclusively through viscous effects. Moreover, we find that the compound gap structure in the presence of Saturn in a 3:2 resonance favors inward transport of grains larger than CAIs currently detected in ordinary chondrites.Comment: 16 pages, 10 figures, updated to match published version in Astrophysical Journa

    The Effect of Supernovae on the Turbulence and Dispersal of Molecular Clouds

    Full text link
    While the importance of supernova feedback in galaxies is well established, its role on the scale of molecular clouds is still debated. In this work, we focus on the impact of supernovae on individual clouds, using a high-resolution magneto-hydrodynamic simulation of a region of 250 pc where we resolve the formation of individual massive stars. The supernova feedback is implemented with real supernovae that are the natural evolution of the resolved massive stars, so their position and timing are self-consistent. We select a large sample of molecular clouds from the simulation to investigate the supernova energy injection and the resulting properties of molecular clouds. We find that molecular clouds have a lifetime of a few dynamical times, less then half of them contract to the point of becoming gravitationally bound, and the dispersal time of bound clouds, of order one dynamical time, is a factor of two shorter than that of unbound clouds. We stress the importance of internal supernovae, that is massive stars that explode inside their parent cloud, in setting the cloud dispersal time, and their huge overdensity compared to models where the supernovae are randomly distributed. We also quantify the energy injection efficiency of supernovae as a function of supernova distance to the clouds. We conclude that intermittent driving by supernovae can maintain molecular-cloud turbulence and may be the main process of cloud dispersal. The role of supernovae in the evolution of molecular clouds cannot be fully accounted for without a self-consistent implementation of their feedback.Comment: 33 pages, 23 figures, submitted to Ap

    Large scale structure simulations of inhomogeneous LTB void models

    Full text link
    We perform numerical simulations of large scale structure evolution in an inhomogeneous Lemaitre-Tolman-Bondi (LTB) model of the Universe. We follow the gravitational collapse of a large underdense region (a void) in an otherwise flat matter-dominated Einstein-deSitter model. We observe how the (background) density contrast at the centre of the void grows to be of order one, and show that the density and velocity profiles follow the exact non-linear LTB solution to the full Einstein equations for all but the most extreme voids. This result seems to contradict previous claims that fully relativistic codes are needed to properly handle the non-linear evolution of large scale structures, and that local Newtonian dynamics with an explicit expansion term is not adequate. We also find that the (local) matter density contrast grows with the scale factor in a way analogous to that of an open universe with a value of the matter density OmegaM(r) corresponding to the appropriate location within the void.Comment: 7 pages, 6 figures, published in Physical Review

    The dynamical state of massive clumps

    Get PDF
    The dynamical state of massive clumps is key to our understanding of the formation of massive stars. In this work, we study the kinematic properties of massive clumps using synthetic observations. We have previously compiled a very large catalogue of synthetic dust-continuum compact sources from our 250 pc, SN-driven, star formation simulation. Here, we compute synthetic N2H+ line profiles for a subsample of those sources and compare their properties with the observations and with those of the corresponding three-dimensional (3D) clumps in the simulation. We find that the velocity dispersion of the sources estimated from the N2H+ line is a good estimate of that of the 3D clumps, although its correlation with the source size is weaker than the velocity-size correlation of the 3D clumps. The relation between the mass of the 3D clumps, M-main, and that of the corresponding synthetic sources, M-SED, has a large scatter and a slope of 0.5, M-main proportional to M-SED(0.5), due to uncertainties arising from the observational band-merging procedure and from projection effects along the line of sight. As a result, the virial parameters of the 3D clumps are not correlated with the clump masses, even if a negative correlation is found for the compact sources, and the virial parameter of the most massive sources may significantly underestimate that of the associated clumps.Peer reviewe
    corecore