415 research outputs found

    A 727/JT8D-100 series engine exhaust system propulsion performance model test

    Get PDF
    The results are presented from testing one-eighth scale models of the Pratt and Whitney aircraft reference and Boeing nozzles for the JT8D-100 series mixed flow engines. The objective of the test was to obtain the nozzle velocity and flow coefficients for the reference configurations and compare these with the Boeing configurations which incorporated a longer splitter between the fan and primary flows. A further comparison was made between the JT8D-100 series nozzles and the Boeing JT8D-9/727 production nozzle performance. A statistical analysis was used to compare configurations which showed the performance (velocity coefficient) of the reference and the Boeing configuration was the same for the JT8D-109. It also showed no difference between reference and the Boeing configuration for the JT8D-115 and no difference for the JT8D-117 nozzles. Bypass ratio (match) was shown to be equally dependent on splitter position as on nozzle area within the range investigated. The nozzles were very similar in flow coefficient within an engine family. Excellent profile data was recorded. The effects of swirl on the nozzle performance was examined and found to degrade the velocity and flow coefficients

    Einstein-aether theory, violation of Lorentz invariance, and metric-affine gravity

    Full text link
    We show that the Einstein-aether theory of Jacobson and Mattingly (J&M) can be understood in the framework of the metric-affine (gauge theory of) gravity (MAG). We achieve this by relating the aether vector field of J&M to certain post-Riemannian nonmetricity pieces contained in an independent linear connection of spacetime. Then, for the aether, a corresponding geometrical curvature-square Lagrangian with a massive piece can be formulated straightforwardly. We find an exact spherically symmetric solution of our model.Comment: Revtex4, 38 pages, 1 figur

    Testing the Equivalence Principle by Lamb shift Energies

    Get PDF
    The Einstein Equivalence Principle has as one of its implications that the non-gravitational laws of physics are those of special relativity in any local freely-falling frame. We consider possible tests of this hypothesis for systems whose energies are due to radiative corrections, i.e. which arise purely as a consequence of quantum field theoretic loop effects. Specifically, we evaluate the Lamb shift transition (as given by the energy splitting between the 2S1/22S_{1/2} and 2P1/22P_{1/2} atomic states) within the context of violations of local position invariance and local Lorentz invariance, as described by the THϵμT H \epsilon\mu formalism. We compute the associated red shift and time dilation parameters, and discuss how (high-precision) measurements of these quantities could provide new information on the validity of the equivalence principle.Comment: 40 pages, latex, epsf, 1 figure, final version which appears in Physical Review

    An astronomical search for evidence of new physics: Limits on gravity-induced birefringence from the magnetic white dwarf RE J0317-853

    Get PDF
    The coupling of the electromagnetic field directly with gravitational gauge fields leads to new physical effects that can be tested using astronomical data. Here we consider a particular case for closer scrutiny, a specific nonminimal coupling of torsion to electromagnetism, which enters into a metric-affine geometry of space-time. We show that under the assumption of this nonminimal coupling, spacetime is birefringent in the presence of such a gravitational field. This leads to the depolarization of light emitted from extended astrophysical sources. We use polarimetric data of the magnetic white dwarf REJ0317853{RE J0317-853} to set strong constraints on the essential coupling constant for this effect, giving k^2 \lsim (19 {m})^2 .Comment: Statements about Moffat's NGT modified. Accepted for publication in Phys.Rev.

    A New Test of the Einstein Equivalence Principle and the Isotropy of Space

    Get PDF
    Recent research has established that nonsymmetric gravitation theories like Moffat's NGT predict that a gravitational field singles out an orthogonal pair of polarization states of light that propagate with different phase velocities. We show that a much wider class of nonmetric theories encompassed by the χg\chi g formalism predict such violations of the Einstein equivalence principle. This gravity-induced birefringence of space implies that propagation through a gravitational field can alter the polarization of light. We use data from polarization measurements of extragalactic sources to constrain birefringence induced by the field of the Galaxy. Our new constraint is 10810^8 times sharper than previous ones.Comment: 21 pages, Latex, 3 Postscript figure

    Quasilocal Thermodynamics of Dilaton Gravity coupled to Gauge Fields

    Get PDF
    We consider an Einstein-Hilbert-Dilaton action for gravity coupled to various types of Abelian and non-Abelian gauge fields in a spatially finite system. These include Yang-Mills fields and Abelian gauge fields with three and four-form field strengths. We obtain various quasilocal quantities associated with these fields, including their energy and angular momentum, and develop methods for calculating conserved charges when a solution possesses sufficient symmetry. For stationary black holes, we find an expression for the entropy from the micro-canonical form of the action. We also find a form of the first law of black hole thermodynamics for black holes with the gauge fields of the type considered here.Comment: 41 pages, latex, uses fonts provided by AMSTe

    Lorentz violating electrodynamics

    Full text link
    After summarizing the most interesting results in the calculation of synchrotron radiation in the Myers-Pospelov effective model for Lorentz invariance violating (LIV) electrodynamics, we present a general unified way of describing the radiation regime of LIV electrodynamics which include the following three different models : Gambini-Pullin, Ellis et al. and Myers-Pospelov. Such unification reduces to the standard approach of radiation in a dispersive and absortive (in general) medium with a given index of refraction. The formulation is presented up to second order in the LIV parameter and it is explicitly applied to the synchrotron radiation case.Comment: 11 pages, extended version of the talk given by L.F. Urrutia in the VI Mexican School: Approaches to Quantum Gravity, Playa del Carmen, Mexico, Nov. 2004. Minor chages in the text and added reference

    Radiation in Lorentz violating electrodynamics

    Full text link
    Synchrotron radiation is analyzed in the classical effective Lorentz invariance violating model of Myers-Pospelov. Within the full far-field approximation we compute the electric and magnetic fields, the angular distribution of the power spectrum and the total emitted power in the m-th harmonic, as well as the polarization. We find the appearance of rather unexpected and large amplifying factors, which go together with the otherwise negligible naive expansion parameter. This opens up the possibility of further exploring Lorentz invariance violations by synchrotron radiation measurements in astrophysical sources where these amplifying factors are important.Comment: Presented at the Second Mexican Meeting on Theoretical and Experimental Physics, El Colegio Nacional, Mexico City, 6-10 September 200

    Matter flows around black holes and gravitational radiation

    Full text link
    We develop and calibrate a new method for estimating the gravitational radiation emitted by complex motions of matter sources in the vicinity of black holes. We compute numerically the linearized curvature perturbations induced by matter fields evolving in fixed black hole backgrounds, whose evolution we obtain using the equations of relativistic hydrodynamics. The current implementation of the proposal concerns non-rotating holes and axisymmetric hydrodynamical motions. As first applications we study i) dust shells falling onto the black hole isotropically from finite distance, ii) initially spherical layers of material falling onto a moving black hole, and iii) anisotropic collapse of shells. We focus on the dependence of the total gravitational wave energy emission on the flow parameters, in particular shell thickness, velocity and degree of anisotropy. The gradual excitation of the black hole quasi-normal mode frequency by sufficiently compact shells is demonstrated and discussed. A new prescription for generating physically reasonable initial data is discussed, along with a range of technical issues relevant to numerical relativity.Comment: 27 pages, 12 encapsulated figures, revtex, amsfonts, submitted to Phys. Rev.

    Gravitational ultrarelativistic spin-orbit interaction and the weak equivalence principle

    Full text link
    It is shown that the gravitational ultrarelativistic spin-orbit interaction violates the weak equivalence principle in the traditional sense. This fact is a direct consequence of the Mathisson-Papapetrou equations in the frame of reference comoving with a spinning test particle. The widely held assumption that the deviation of a spinning test body from a geodesic trajectory is caused by tidal forces is not correctComment: 12 page
    corecore