3 research outputs found

    Boron Insertion into the N≡N Bond of a Tungsten Dinitrogen Complex

    Get PDF
    The 1,3-addition of 1,2-diaryl-1,2-dibromodiboranes (B2Br2Ar2) to trans-[W(N2)2(dppe)2] (dppe = κ2-(Ph2PCH2)2), which is accompanied by a Br–Ar substituent exchange between the two boron atoms, is followed by a spontaneous rearrangement of the resulting tungsten diboranyldiazenido complex to a 2-aza-1,3-diboraallenylimido complex displaying a linear, cumulenic B=N=B moiety. This rearrangement involves the splitting of both the B–B and N=N bonds of the N2B2 ligand, formal insertion of a BAr boranediyl moiety into the N=N bond, and coordination of the remaining BArBr boryl moiety to the terminal nitrogen atom. Density functional theory calculations show that the reaction proceeds via a cyclic NB2 intermediate, followed by dissociation into a tungsten nitrido complex and a linear boryliminoborane, which recombine by adduct formation between the nitrido ligand and the electron-deficient iminoborane boron atom. The linear B=N=B moiety also undergoes facile 1,2-addition of Brønsted acids (HY = HOPh, HSPh, and H2NPh) with concomitant Y–Br substituent exchange at the terminal boron atom, yielding cationic (borylamino)borylimido tungsten complexes

    [3,3]-Sigmatropic Rearrangements of Fluorinated Allyl (Thio)cyanates – A Tool for the Synthesis of Fluorinated (Thio)ureas

    Get PDF
    The first (thio)cyanate to iso(thio)cyanate rearrangements based on 2-fluoroallylic alcohols are presented. Long-chain 2-fluoroallylic alcohols were converted to corresponding N-unsubstituted carbamates by treatment with trichloroacetyl isocyanate. Dehydration using trifluoroacetic anhydride in the presence of triethylamine formed intermediate allylic cyanates, which immediately underwent sigmatropic rearrangement to fluorinated allyl isocyanates. Without isolation the latter delivered fluorinated ureas by addition of amines. The thiocyanate to isothiocyanate rearrangements started from the same fluorinated allylic alcohols, which were first converted to mesylates. Heating in THF with potassium thiocyanate led to fluorinated allyl isothiocyanates, via [3,3]-sigmatropic rearrangement of intermediate allyl thiocyanates. The formed products were further reacted with amines to fluorinated thioureas

    Two π-Electrons Make the Difference : From BODIPY to BODIIM Switchable Fluorescent Dyes

    No full text
    (aza-)BODIPY dyes (boron-dipyrromethene dyes) are well established fluorophores due to their excellent quantum yields, stability and diversity, which led to promising applications including imaging techniques, sensors, organic (opto)electronic materials or biomedical applications. We herein present a novel approach to modify the 12 π-electron core of the dipyrromethene scaffold. The replacement of two carbon atoms in the β-position of a BODIPY dye by two nitrogen atoms afforded a 14 π-electron system, which was termed BODIIM (boron-diimidazolylmethene) in systematic analogy to the BODIPY dyes. Remarkably the BODIIM dye was obtained with a BH2-rigidifying entity, which is currently elusive and sought after for the BODIPY dye class. DFT-calculations confirm the (12 + 2) π-electron relationship between BODIPY and BODIIM and reveal a strong shape correlation between LUMO in the BODIPY and the HOMO of the BODIIM. The modification of the π-system leads to a dramatic shift of the fluorescent emission. Nucleophilic reactivity was found at the meso-carbon atom in the formation of stable borane adducts with a significant shift of the fluorescent emission, and this behavior contrasts the reactivity of conventional BODIPY systems. In addition, the reverse decomplexation of the borane adducts was demonstrated in reactions with a representative N-heterocyclic carbene to retain the strongly fluorescent BODIIM compound, which suggests applications as fully reversible fluorescent switch.publishe
    corecore